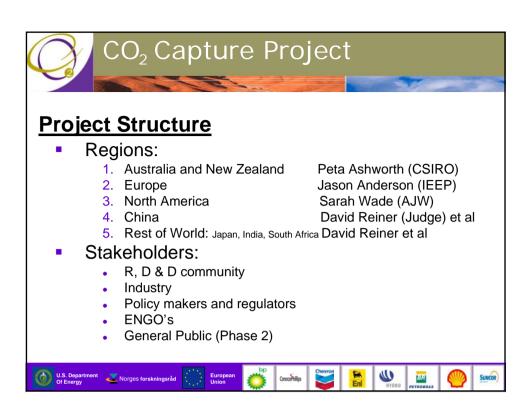


Project Aims and Objectives

- 1. Establish a stakeholder contact database
- 2. Develop a prioritised assessment of public perceptions and potential concerns
- 3. Produce conclusions and recommendations on strategies for addressing the concerns identified above in task 2, based on the most appropriate and effective approaches to dialogue and education.

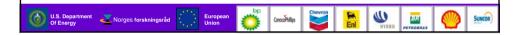


1. Regulatory (Local HSE Issues)

- Leakage
 - 1. What will be the effects on human health?
 - 2. What will be the effects on ecosystems?
- Pipeline safety issues
 - Material choice to limit the possibility of corrosion
 - Importance of monitoring for potential leaks\
- CCS effects on drinking water (including acidification)
- Secondary effects related to the energy intensity and chemicals required for CCS (net GHG impacts?)
- Secondary effects from continued use of coal (human and environmental)
- Effects of natural and induced seismicity

1. Regulatory (Siting)

- Pipeline siting in urban areas has the potential to be a concern
- Will landowners be liable for CCS if a safety issue arises?
- How do you plan to optimise storage options?
- Will CCS have a positive or negative impact on land values?
- Who has rights over the land once a CCS license has been granted?

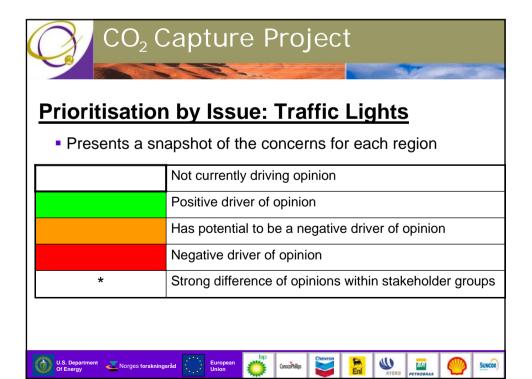


Deployment Cost (2) and Scale (3)

- Is there enough storage capacity to meet our needs?
- How prevalent will this be?
 - 1. How many storage sites will you need for one pipeline
 - 2. How much pipeline is required
- Do people understand the scale of infrastructure required
- How will the increased costs required for CCS investment be achieved?

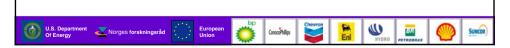
4. Information/Communication

- Not everyone has access to information on CCS.
- Those that have the information often do not take the time to access it.
- Issues around quality, use of language and the medium the information is available in.
- There has been very little attempt to communicate with stakeholders outside the
- R & D community.
- If communicating CCS, it is more effective if set in the context of climate change.



5. Policy Support / Consideration of Alternatives

- Is there enough support to make it happen?
 - investment
 - public awareness about the technology
 - demonstration projects to confirm it is a true player
- CCS is only part of the solution and investment should not be at the expense of renewables
- Preference for CO2 versus nuclear waste
- Impact of CCS
 - extending the oil market through EOR extending coal market
- Is CCS a bridging or long term solution?
- What is the acceptability of different types of CCS
 - EOR, from coal, oil and gas
 - offshore versus onshore
 - ocean versus geological


Common Findings

- Different issues in regions depending on stage of development of CCS
- Not enough information in developing countries
- Quality of information can be improved, "fit for purpose"
- Need to ramp up efforts for communicating CCS
- Providing context of climate change generally more effective
- Concerns about leakage are across the world
- There is a social risk to not communicating about the technology

- Tier 1
 - Regulators environmental and utility
 - Government
 - Media
- Tier 2
 - ENGOs
 - General public
 - Industry groups

