CO₂Capture Project

CO₂ Capture Project

BUILDING ON CCP1 RESULTS

CCP1 favored technologies achieved:

✓ Proof-of-Feasibility

- Concept successfully tested at the lab scale
- Critical items for development identified.
- Potential for consistent reduction in CO₂
 Capture costs compared to currently available technology.

CCP Scenarios

Scenario		CO ₂ -generating fuel	Uncontrolled CO ₂ -emission
UK Refinery	Heaters & Boilers in existing refinery	Refinery fuel oil and gas	2,6 mill.ton/yr from target H&B's
Alaska Turbines	Small powergen turbines in operation	Natural gas	2,6 mill.ton/yr
Norway Gas Power	New 400 MW CCGT-plant	Natural gas	1,3 mill.ton/yr
Canada coke gasifier	New IGCC-plant	Petroleum coke	4,9 mill.ton/yr

BR

PETROBRAS

SUNCOR

US Department of Energy

CCP2 Technology Portfolio Main Features

- Technologies with different "time to market" in a sequenced approach:
 - Short Term (by 2010)
 - Mid-Term (2010-2012)
 - Long Term (by 2015)
- Emphasis on Pre-Combustion technology, but continuation of most promising Post-Combustion and Oxy-firing Projects.

CCP2 Capture Program Targets

- Achieve significant progress for each technology:
 - Scaling-up successfully operation by at least one order of magnitude.
 - Addressing and solving critical issues identified in CCP1

 At least one technology ready for field demonstration by the end of the Project.

CCP2 Capture Program Timeline

2004

- Selection of Technology Portfolio.
- Preparation of Project Proposals.
- Submission to Governmental funding entities (Oct-Dec).
- **2005**
- Approval of Project Proposals (Mar-May).
- Definition of further needs
- Start Technical Program (Sep-Dec).
- Prepare additional proposal if necessary.
- **2006-2008**
- Run technical Program to completion maintaining stage gate approach.
- Update economical evaluations.
- Continue monitoring of novel concepts and competing technologies.

The CCP2 Portfolio (Jan. 2006)

- Pre-Combustion
 - CO2 separation technologies
 - Membrane Water Gas Shift (MWGS)
 - Sorption Enhanced Water Gas Shift (SEWGS)
 - Novel Syngas/Hydrogen production technologies
 - Hydrogen Membrane Reforming (HMR)
 - Chemical Looping Reforming
 - One-Step Hydrogen
 - HyGenSys
 - Membrane Reforming

European

Union

SUNCOR

HYDRO

PETROBRAS

The CCP2 Portfolio (Jan. 2006)

- Post-Combustion
 - BIT (Best Integrated Technology)
- ❑ Oxy-firing
 - Chemical Looping Combustion (CLC)

The CCP2 Projects

- □ Three major Projects approved:
 - CLIMIT (Co-Funder Norwegian Council for Research)
 - CACHET (Co-Funder European Union)
 - CLCGASPOWER (Co-funder European Union)

CO₂ Capture Project

CLIMIT

- Co-Funder: Norwegian Council for Research)
- Duration: 36 Months (started September, 2005)
- Total Budget: ~ 7 MM\$ (subject to exchange rate)
 ~ 90% Capture
- > Technologies Included:
 - oHMR(Hydro): 36 MonthsoMWGS(Sintef): 6 Months
 - o BIT (GE) : 8 Months

SUNCOR

Hydrogen Membrane Reformer: The Concept

- •Combination of reforming reactor and separation
- •Extract product gas (H₂) from reactor, no traditional CO₂ removal system required
- •Drive equilibrium limited reactions towards completion
- •Expand allowed range of temperatures and pressures

Hydrogen Membrane Reforming

- Strategic Features
 - Long Time to Market (2015)
 - > High Potential for Cost Reduction (< 30 \$/ton CO2 avoided)</p>
 - > Application to Power Generation from Natural Gas
- CCP1 Achievements
 - > Developed materials with good permeability and stability
 - Developed method for manufacturing supproted membranes in the form of small tubes (10cm length, overall diameter 8mm).

Hydrogen Membrane Reforming

CCP2 Expected Development

- > Develop membranes in the form of monoliths.
- Successfully test at the laboratory level 2X2 cm monoliths.
- Fabricate 7x7 cm monoliths that will form the base unit for pilot plant (25 kW).
- Review and optimize process scheme including collaboration with turbine vendor.

CO₂ Capture Project

Union

Best Integrated Post-Combustion Technology

Best Integrated Post-Combustion Technology

Strategic Features

- Short Time to Market (2008-2010)
- > High Potential for Cost Reduction (< 30\$/ton CO2 avoided)</p>
- > Application to Power Generation from Natural Gas

CCP1 Achievements

Developed low-cost integrated process scheme based on application of concepts developed in engineering study.

SUNCOR

Best Integrated Post-Combustion Technology

CCP2 Expected Development

- Assess feasibility and constraints of flue gas recycle to combustor.
- > Evaluate use of novel solvents.
- Review and further optimize the CCP1 process scheme.
- Include novel concepts under development.

CLCGASPOWER

- **Co-Funder:** European Union
- Type of Project: STREP
- Duration: 30 Months (Started January 1st, 2006)
- AAAA Total Budget: ~ 2.8 MM\$ (subject to exchange rate)
- Single Technology Development of Chemical Looping Combustion by a Consortium formed by:
 - **Chalmers University of Technology** 0
 - **Alstom Boilers** 0
 - **CSIC** 0
 - Shell 0
 - Vienna University of Technology 0
 - **Tallinn University of Technology** 0

Chevror

HYDRO

PETROBRAS

SUNCOR

CO₂ Capture Project

Chemical Looping Combustion

- Chemical Looping is a new combustion technology based on oxygen transfer from combustion air to the fuel by means of a metal oxide acting as a solid carrier. Core of the technology is a two-reactors system with continuous circulation of solids:
- Fuel reactor: $4MeO + CH_4 \Rightarrow 4Me + 2H_2O + CO_2$
- Air reactor: $4Me + 2O_2 \Rightarrow 4MeO$

SUNCOR

Chemical Looping Combustion

Strategic Features

- Mid Time to Market (2010-2012)
- > High Potential for Cost Reduction
- > Application to gas fired boilers/ steam turbine power generation

CCP1 Achievements

- Developed materials with good activity by extensive screening and development.
- Achieved proof-of feasibility in a 10kW bench scale unit with continuous solid circulation.

Chemical Looping Combustion

CCP2 Expected Development

- Assess long time resistance (both chemical and mechanical of developed materials)
- Scale-up to 200kW pilot unit c/o Vienna University of Technology.
- > Prepare concept design for demo unit (20-50 MW).

CO₂ Capture Project

CACHET

- > Co-Funder: European Union
- Type of Project: Integrated Project for Production of Hydrogen from Natural Gas with CO₂ Capture
- > Duration: 36 Months (starting March 1st, 2006)
- > Total Budget: ~ 16.5 MM\$ (subject to exchange rate)
- Consortium of 29 Partners from 18 Countries.
- > Targets:
 - Develop in parallel to "ready-for-pilot" several novel
 hydrogen production and pre-combustion CO₂ Capture Technologies.
 - Identify optimal process scheme through optimized integration of technologies driven by economic evaluation.

Membrane Water Gas Shift

Membrane Water Gas Shift

Strategic Features

- Mid Time to Market (2010-2012)
- Mid Potential for Cost Reduction
- Preferential application to heaters/boilers or steam turbine power generation from natural gas.

CCP1 Achievements

- Developed very thin palladium layers (< 5µ) supported on porius stainless steel (SINTEF)
- Developed vanadium membranes in palladium layers sandwich to improve permeability (Eltron).

European

Union

Membrane Water Gas Shift

CCP2/CACHET Expected Development (SINTEF/ECN)

- Develop and test supported palladiu membranes in the form of 1 meter long tubes (I.D. 12.5 mm)
- Build and operate a bench scale reactor module (12 tubes) with hydrogen production roughly equivalent to 15-30 kW.

Sorbent Enhanced Water Gas Shift

bp

ConocoPhillips

Chevron

BR

PETROBRAS

SUNCOR

HYDRO

US Department of Energy

Sorbent Enhanced Water Gas Shift

Strategic Features

- Short Time to Market (by 2010)
- Mid/High Potential for Cost Reduction
- Preferential application to power generation from natural gas in combined cycle.

CCP1 Achievements (Air Products)

- > Develop modified hydrotalcites with good adsorption properties.
- Successfully tested in a single lab reactor with alternate adsorption/desorption.

Sorbent Enhanced Water Gas Shift

CCP2 Expected Development (Air Products/ECN)

- Further optimization of adsorbent materials.
- Build and operate a lab unit with 7 reactors in parallel to simulate the commercial operating cycle. Reactors with full commercial length and small diameter.

Chemical Looping Reforming

US Department of Energy

SUNCOR

Chemical Looping Reforming

- Mid/Long Term time to market (2012/2015)
- CCP2 Expected Development (CLC Consortium)
 - Screening and optimization of solid carrier materials at the lab scale.
 - Engineering development will benefit from parallel CLC development.

One-Step Hydrogen

US Department of Energy

Eni

(1)

HYDRO

BR

PETROBRAS

SUNCOR

One Step Hydrogen

- Long Term time to market (~ 2015)
- CCP2 Expected Development (EniTecnologie)
 - > Optimization of solid carrier materials at the lab scale, and scaleup of production with commercial manufacturer.
 - Reactor and Process scheme optimization
 - > Hydrodynamic optimization through "mock-up" with continuous solid circulation.

HyGenSys

HyGenSys is a novel reforming technology based on the Gas Heating concept (avoidance of furnace emissions) and strict integration with a gas turbine. In the power generation mode, hydrogen burning in the turbine is needed for zero emission.

HyGenSys

- Short Term time to market (by 2010)
- CCP2 Expected Development (IFP)
 - > Process Optimization with turbine vendor.
 - Reactor mechanical design.
 - > Hydrodynamic optimization through large "mock-up"

Low Temperature Membrane Reforming

Novel reforming technology based on the development of dense Pd alloy membranes to separate hydrogen as it is formed, able to operate at a temperature of about 600°C.

Low Temperature Membrane Reforming

- **Long Term time to market (by 2015)**
- CCP2 Expected Development (ECN, SINTEF)
 - > Development of suitable membranes at laboratory level.
 - > Test in base module reactor (the same designed for MWGS).

Completion of CCP2 Portfolio Coal Gasification

- CCP1 showed that, once the coal gasification route is selected, additional cost for CO₂ Capture is very low.
- Cryogenic technology seems to be favoured due to potential poisoning of any catalyst, solvent or sorbent.
- The Capture Team is finalising CCP2 work programme in this field.

The CCP2 Time Sequenced Portfolio

- Short Term (~ 2010)
 - 。SEWGS
 - 。BIT
 - 。HyGenSys
- Mid-Term (~ 2012)
 - o Chemical Looping Technologies
 - MWGS
- Long Term (~ 2015)
 - 。HMR
 - o One-Step Hydrogen
 - Low Temperature Membrane Reforming.

