

Production of Hydrogen from Natural Gas with Integrated CO₂-capture

Fuel for a Thermal Power Plant

Julien Meyer, Rolf Jarle Aaberg *, <u>Bjørg Andresen</u> Institute for Energy Technology P.O. Box 40, N-2027 Kjeller, Norway

* Present address: Statkraft, Lilleakervn. 6, 0283 Oslo, Norway

Objective of the present study:

Suggest and describe how the "IFE" CO_2 -removal process $CaO(s) + CH_4(g) + 2H_2O(g) \rightarrow CaCO_3(s) + 4H_2(g)$ can be integrated in a hydrogen Combined Cycle Power Plant (CCPP) and a hydrogen steam boiler

- Generate a N_2 -diluted, H_2 fuel gas stream for gas turbines fuel (H_2/N_2 -ratio: 50/50)
- Generate a H₂-rich fuel (+ 95%) for steam boilers

H₂-production in one single step

Steam reforming:

 CH_4 (g) + H_2O (g) $\rightarrow CO$ (g) + $3H_2$ (g)

Water gas shift:

CO (g) + H_2O (g) $\rightarrow CO_2 + H_2$ (g)

Carbonation:

CaO (s) + CO₂ (g) \rightarrow CaCO₃ (s)

Overall:

CaO (s) + CH₄ (g) + 2H₂O (g) \rightarrow CaCO₃ (s) + 4H₂ (g)

Equilibrium hydrogen content

NorCap seminar 14 - 15 October, Trondheim

Integrated reforming and CO₂ capture

Advantages:

- Process simplification
 - Reforming, water gas shift and CO₂-separation occur simultaneously in the same reactor

Increased hydrogen yield

- High H₂-yield at lower temperatures than in the conventional reforming process
- Separation of CO₂ as a solid in the process
 - No additional costly step for CO₂ separation
 - Delivered as a pressurised, concentrated CO₂ stream for sequestration or utilisation

Recycled CaO represents an important carrier of heat into the reforming stage

Challenge: Reactor technology -

IFE CO₂-capture concept; CCPP-system

Process flow diagram, CCPP-system

Production and consumption figures, H₂-production with integrated CO₂- capture and CCPP-system

IFE CO₂-capture concept; steam boiler-system

Process flow diagram, steam boiler-system

Production and consumption figures,

H₂-production with integrated CO₂- capture and steam boiler

Assumptions and simplifications

- Heat from the desulphuriser is used for production of a natural gas feed at 400°C and 5.4 bar
- The conversion rate of hydrocarbons heavier than methane is 100 %
- The reformer conversion rate for methane is 93 %
- The CO₂-adsorption rate is 95 %
- The CaCO₃ conversion in the calcination reaction is 99 %
- A catalyst is not defined in the simulation the catalyst is not circulating between the reactors and does not affect the heat balance of the system
- The combustion chambers of the regenerator are inside the reaction vessel for maximum heat transfer
- The adiabatic compressor efficiencies are assumed to be 85 %
- Heat loss to the environment from the CO₂ removal process reactors and pipes etc. is assumed to be 9.3 % of the heat transferred in the heat exchangers.
- The LHV efficiency of the CCPP is 58 %
- It is assumed that water vapour in the turbine fuel does not affect the firing properties of the combustion chamber. In stead of 50 % dry N₂ the simulations allows for steam in the inert fraction as long as 50 % H₂ is maintained.

Summary

- 90% CO₂ removal is possible
- CCPP with electrical efficiency 58% (LHV) is reduced to 40 - 44%
 - IFE CO₂-capture concept is intended to operate at lower pressures, H₂-fuel has to be compressed
 - Need for sulphur removal
- Producing H₂ for a steam boiler, waste heat is also generated
 - Heat can be used for preheating the boiler