CO₂ Capture Project

Risk Assessment and Remediation Options for Geologic Storage of CO₂

> Sally M. Benson Lawrence Berkeley National Laboratory

Funded by the CO₂ Capture Project and the Research Council of Norway

October 8, 2003

www.co2captureproject.org

This presentation was prepared with the support of the Research Council of Norway /Klimatek under Award No. 144737/228. Any opinions, findings, conclusions or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the Klimatek.

Outline

- Lessons learned from natural and industrial analogues
- Scenarios for assessing consequences of leaking storage projects
- Probabilistic risk assessment methodology
- Risk management, mitigation and remediation options

Analogues for Geologic Storage of CO₂

Industrial Analogues

- Deep injection of liquid and hazardous wastes
- Natural gas storage
- CO₂ enhanced oil recovery
- Occupational health and safety regulations
- Nuclear waste storage*

Natural Analogues

- Oil and gas reservoirs
- Natural CO₂ reservoirs
- Natural CO₂ releases
 - Volcanic eruptions
 - Hydrothermal vents
 - Limnic releases
 - Diffuse venting
 - Ecosystem CO₂ cycling

* Limited relevance but some important lessons

Lesson 1: CO₂ Can be Stored Safely

- Enhanced oil recovery
- Natural gas storage
- Deep injection of liquid and hazardous wastes

Natural Gas Storage

Lesson 2: Health Effects are Well Understood

- Atmospheric CO₂ 370ppm
- Humans tolerate up to 1% with no adverse effects
- Significant effect on respiratory rate and physical discomfort at 3-5%
- Death imminent at >30% for several minutes

Federal occupational safety and health regulations set standards:

- 0.5% for 8-hour, 40 hr work week
- 3% for short term, 15 minute exposure
- 4% for maximum instantaneous exposure

Lesson 3: Hazard Depends on Nature of Release, not Size

Releases that are quickly dispersed in the atmosphere provide little hazard

Lesson 4: Biggest Risks Have Been Identified

- Leakage through poor quality or aging injection well completions
- Leakage up abandoned wells
- Leakage due to inadequate caprock characterization
- Inconsistent or inadequate
 monitoring

Maturation of the technology and improved regulations have mitigated most of these problems for the industrial analogues

Lesson 5: CO₂ Storage has Some Unique Attributes

- Buoyancy driven migration and trapping
- Solubility and mineral trapping
- Long time frame (1000s of years)
- Non-hazardous at low concentrations

Risk Assessment

• Risk = Probability x Consequences

 Probability = Likelihood of an event occurring

 Consequences = Effects of the event occurring

Scenarios and Consequences

Probability: Features-Events-Processes-Methodology

Features	Events	Processes
 Caprock thickness and permeability Mineralogy of the storage zone Faults and abandoned wells 	 Earthquakes New exploration wells Changes in groundwater use Well blowout 	 Buoyancy-driven flow Mineral trapping Solubility trapping Geomechanical changes in the caprock

FEP Risk Assessment Framework

Long Term Fate of Injected CO₂: Slippery vs. Sticky Plumes

Plumes With Low Residual Gas Saturation Will Migrate and Dissolve

Acceptable Leakage Rates

Sensitivity of CO₂ Seepage and Soil Gas Concentration to Various UZ Properties

Effectiveness for Greenhouse Gas Control

Ecosystem impacts may decrease acceptable leakage rates to less than 0. 1% per year

Remediation of Leaks within the Storage Reservoir

Lower reservoir pressure

- Inject at lower rate
- Stop injection
- Begin CO₂ extraction

- Pump out groundwater peripherally to lower pressure
- Extract CO₂ before it reaches the leakage path
 - Pump from reservoir before leakage point
- Hydrofracture to access new areas of the reservoir away from areas of leakage

Groundwater Remediation

ssive methods

Natural attentuation by dissolution, migration, and mineralization
 Active methods

- Gas phase pumping
- Groundwater extraction to dissolve plume
- Single well dissolution system: inject and produce water
- Methods to deal with other contamination due to dissolution of minerals by CO₂
 - Pump and treat with wells
 - Vertical
 - Horizontal
 - Deep gravel trenches/drainage
 - Containment by managing hydraulic heads
- Sealing faults in limited areas
 - Foam injection
 - Grout injection

Picture taken from http://www.clu-in.org/download/remed/542r01021b.pdf

Vadose Zone Remediation

- Passive methods
 - Diffusive flux to surface
 - Baroballs
- Active methods
 - Soil gas extraction
 - Vertical wells
 - Horizontal wells
 - Drainage systems
 - Trenches
 - Covers
 - Landfill cover—low permeability material
 - Collection system below cover
 - Sprinkling/irrigation to dissolve CO₂ and move it downward

Conclusions

- CO₂ storage can be safe and effective
- Impacts of leaking storage projects are well understood
- Methodology for probabilistic risk assessment is available
- Remediation of leaking storage projects is possible
- Credible site-specific risks assessments are the biggest challenge
 - Adequate site characterization data
 - Performance confirmation