CO₂ Capture Project

CCP Economics Overview

Torgeir Melien, Norsk Hydro

Final Cost Estimates and Economics

- Background and motivation
 - Objectives and targets
 - Work program 2000-2004
- Approach and challenges
 - Scenarios and technologies
 - Baseline technologies and new technologies
 - Cost estimation and screening
- Results and findings
 - CO₂ costs

Objectives and Targets

- Develop new, more efficient CO2-capture technologies
- Reduce capture cost 50 75%
 - calculated CO2-costs cover the capture processes, excl. CO2-transport and –storage part

CO₂ Capture Project

Work Program 2000-2004

No of Technology Options

start-	up phase	delivery of results				
• CCP agreement ²⁵⁰ • Funding applicatio	 Funding secured Contract negotiations commence 	 Over 80 contracts signed Program focused thru value management 	• Optimum technology options progressed to proof of feasibility			
150 >200 Technologies Reviewed	Tech teams screen tech options & recommend detailed evaluation of promising candidates	Number of technology options focused based on Screening Criteria: • Likelihood of success in timeframe • Ability to deliver target cost reductions • Materiality to Participants' sources • Fit within available funding				
50	30 Capture & 50 storage Techs Screened 50 Techs Pass Stage Gate		Screening favored technologies			
0 Review & Evaluation	Analysis	Broad Tech Development	Focused Tech Development			
Apr 2000	Aug 2000 Sep	2001 Dec 2002 Dec 2003				

Approach

Capture technologies

cost-reducing development of pre/post/oxy technology options within the context of ...

"Scenarios"

or case studies of representative, real-life, industrial-plant applications, and

"Baselines"

or currently best available capture technologies (mainly postcombustion amines) established as benchmarks in evaluating ...

New technologies

evaluating capture performance and costs

CCP Scenarios

<u>Scenario</u>	Fuel Source	CO ₂ Source	<u>Geologic</u> <u>Sink</u>	<u>Location</u>
<u>Refinery</u>	Hydrocarbon Gas + Liquids	Heaters and Boilers	Storage	UK Scotland
<u>Large</u> <u>Gas Turbines</u>	Natural Gas	Large Electric Power (CCGT)	Storage	Western Norway
<u>Distributed</u> Gas Turbines	Natural Gas	Small Distributed Turbines	Storage	Alaska North Slope
<u>Gasification</u>	Solid Gasification (pet coke)	Steam, H ₂ , and Electric Cogen	Storage	Western Canada

Final Scenario-Technology Cases

Case	Scenario		Process		SS	Technical Provider	Contractor		
			-		Group		р		
	Ν	U	Α	С	Ро	Pr	Ox		
Uncontrolled	Х							Norsk Hydro	(CCP)
				Х				Fluor	Fluor
Baseline Amine	Х				Х			Fluor	Fluor
		х			Х			Fluor	Fluor
			X		Х			Fluor	Fluor
				X	X			Fluor	Fluor
Very Large Scale ATR			X			X		Jacobs	(CCP)
Membrane WGS (DOE)		х				X		Eltron Res., SOFCo	Fluor
Membrane WGS (GRACE)		Х				Х		BP	(CCP)
Hydrogen Membrane Reformer	x					X		Norsk Hydro	Fluor
Sorption Enhanced WGS			X			X		Air Products	Fluor
Sorption Enhanced WGS- O ₂	х					X		Air Products	(CCP)
Sorption Enhanced WGS- Air	Х					X		Air Products	(CCP)
Advanced Gasification				х		Х		Fluor	Fluor
Flue Gas Recycle ASU		Х					Х	Air Products	Air Products
Flue Gas Recycle ITM		х					Х	Air Products	Air Products
Amine-Normal Cost	X				Х			Nexant	Nexant/(CCP)
Amine – Low Cost	х				Х			Nexant	Nexant/(CCP)
Amine-Low Cost Integrated	X				Х			Nexant	Nexant/(CCP)
Best Integrated Technology (BIT)	х				Х			(Nexant/MHI) CCP	(CCP)
Membrane Contactor/KS1	X					X		Kværner/MHI	Kværner/MHI

N-Norway, U-UK, A-Alaska, C-Canada. Po-Post-Combustion, Pr-Pre-Combustion, Ox-Oxyfuel

Comparing Mature & Non-mature Technologies

Estimates and screening cover the realization phase of technologies

- do not include pre-realisation techology development / R&D-costs (blue lines)
- handle technologies at various development states similarly w.r.t. cost estimates and economic screening

Consistency in Estimation and Screening

Transforming a multitude of individual technology studies into a comparable and quantified set of Scenario/Technology options

- Integrating capture technologies into scenarios
 - Calibrating physical scopes and capacities
 - Capex vs. opex tradeoffs
 - Capex and opex estimation methods and assumptions

Consistent CO2-cost evaluation

Economic Screening Criteria – CO2-Avoided Cost

CO2-Cost Results Alaska

- capture only, excl. transport & storage

CO2-Cost Results Norway

- capture only, excl. transport & storage

CO₂ Capture Project

Powergen costs Norway

- capture only, excl. transport & storage

CO2-Cost Results Canada

- capture only, excl. transport & storage

