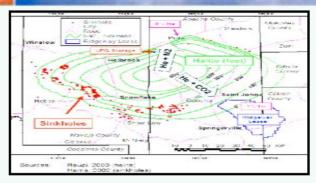


SMV Program Organization

Four Technical Areas (2000-2003)

- Integrity Competence of Natural / Engineered Systems
- Optimization Economic Offsets, Efficiency, Transportation
- Monitoring Performance and Leak Detection
- Risk Assessment Probability x Consequences, FEPs, Methodologies, Modeling, Mitigation / Remediation


CO₂ Capture Project

Integrity - Natural & Industry Analogs

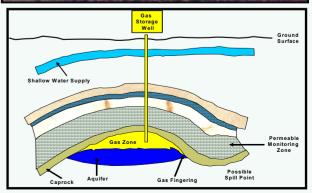
Natural CO₂ Reservoirs (ARI)

- a. 3 Large US Accumulations
- b. Thick Evaporite or Clastic seals
- c. Lack of Faults or Self-Healing Faults

St John's Dome Structural Map

Leaky Systems (Utah State)

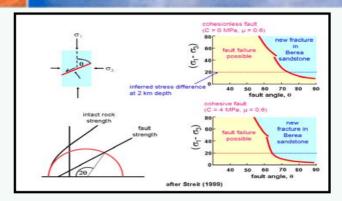
- a. 3D Structure / Stratigraphy Models
- b. Fluid Migration Paths & History
- c. Natural CO₂ Immobilization Rate


Natural CO₂-Charged Geyser System in E. Central Utah

Natural Gas Storage Industry (GTI)

- a. Widespread, Decades-Old Industry
- b. Excellent Safety Record
- c. Site Selection, Operations, Intervention
- d. Key Implications for CO₂ Storage

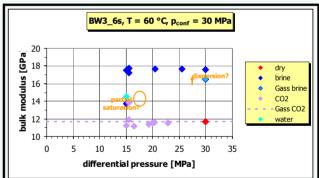
Gas storage facility elements



Integrity - Reservoir & Cap Rock

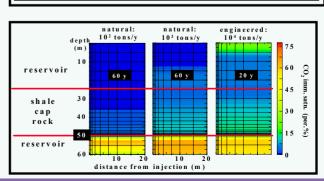
Geomechanical Response to CO₂ (ASP)

- a. Stability of Reservoir / Cap Rocks; Faults
- b. Tools to Predict Maximum Fluid Pressure
- c. Development of Stress-Seismic Techniques


Evaluation of Fault Stability: 2D Failure Plot

Rock Response to CO₂ (GFZ-Potsdam)

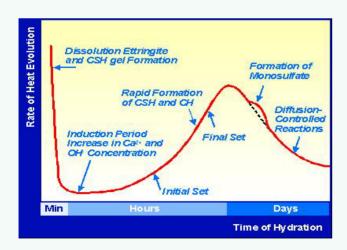
- a. Geophysical Attributes; Mineral Stability
- b. Anomalous Effects: Flow Stability?
- c. Ions Released: Mineral Dissolution


Bulk Modulus: Gassmann

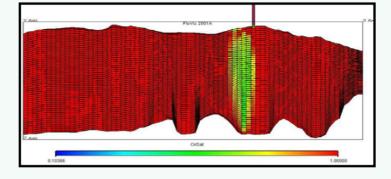
Reactive Transport Modeling (LLNL)

- a. Geochemical / Geomechanical Response (Permeability Decrease/ Increase, Resp.)
- Dependency on Reservoir and Influx Parameters
- Abatement of Effects with Time

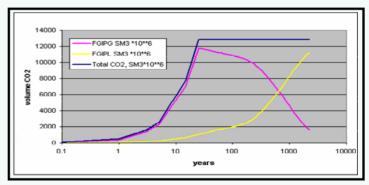
Geochemical and geomechanical response to CO₂ injection

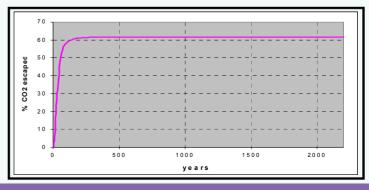


Integrity – Well Stability

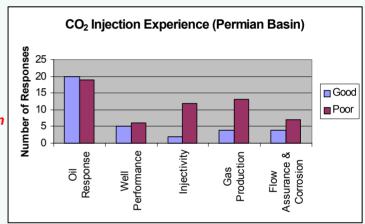

Well Integrity (SINTEF)

- a. Testing of Portland Cement
- ы. Degradation Mechanisms and Rate
- c. New Cements and Sealants
- d. Well Failure Simulation


Heat Evolution Profile of Hydrating Cement


Reservoir Simulation: 5 Years

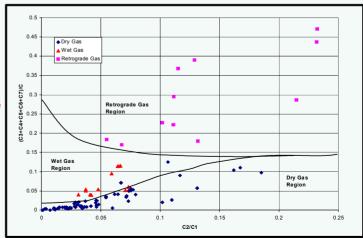
Free vs.
Dissolved
CO₂ With
Time



Optimization – Hydrocarbon Reservoirs

CO₂ EOR Record (NMT)

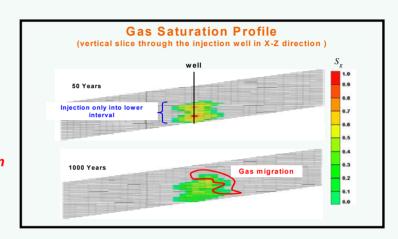
- a. "Look back" Permian Basin Survey
- b. Oil Response & Breakthrough
- _{c.} Lack of Reservoir Characterization
- d. Need for Monitoring
- e. Anecdotal Safety Record


Survey Results: Permian Basin EOR Experience

Gas & Condensate Field Storage (TTU)

- a. Experimental capacity / compatibility
- b. Phase Behavior; Compressibility (Z)
- c. "Sequestration Parameter" Screening Tool

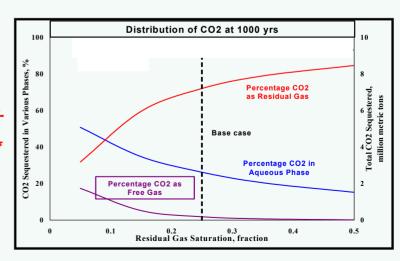
Hydrocarbon Gas Phase Behavior



Optimization – Saline Aquifers

CO₂ Movement & Immobilization (UT)

- a. Trapping Mechanisms & Timing
- b. Injection Location in Reservoir
- c. Petrophysical Sensitivity
- d. Solubility and Residual Gas Trapping
- e. Most CO₂ Immobilized by 1000 yr.
- f. Mineralization Small, 10000 yr.


Injection Location Effect on CO₂ Dispersion

CO₂ Impurities – Subsurface (UT)

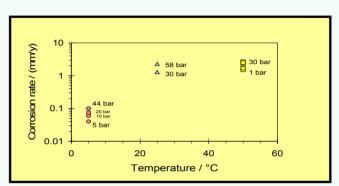
- a. Impure CO₂ Streams (SNOx effects) on Injectivity, Reservoir & EOR
- b. Unlikely to Affect Injectivity
- _{c.} MMP and Mobility Ratio Tradeoff in EOR

Immobilization States of CO₂

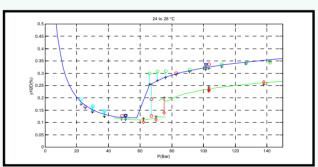
Optimization – Transportation

Materials Selection for Pipelines (IFE)

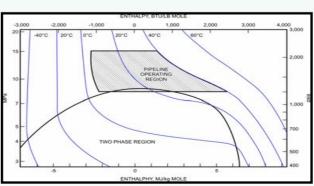
- New Experimental Data for Carbon Steel (CS) Corrosion at High P
- Existing Models Exaggerate CS Corrosion Rates
- c. Pipeline Design and Inhibitor Use


Process Design (Reinertsen Engr.)

- a. Reevaluate Existing Hydration Pipeline Specifications for Norwegian Offshore Case
- b. Relaxed from 60 to 600, Perhaps 1300 ppm
- c. Cost Savings with Process Integration


Impurities and Surface Equipment (Battelle)

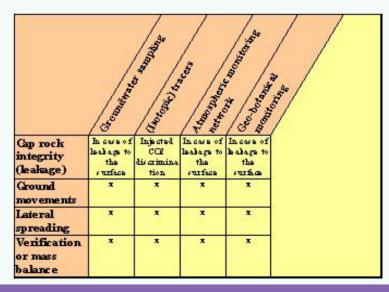
- Acid Gases Likely to Impact Surface Equipment
- Further Work on Gas Phase Behavior Needed


Corrosion Rates w & w/o Inhibitor

Water Solubility on CO₂ (w & w/o CH₄)

Pipeline Operation in 2 phases with Addition of 5% each N₂ and CH₄

Monitoring – General


Survey of Monitoring Applications (TNO)

- Well Monitoring: P&T, ER, TDT,
 Microseismic, VSP, Cross well Seismic,
 fluid sampling
- b. Surface Geophysical: 4D seismic, Subbottom profiling and Sonar (marine), gravity, EM, InSAR, tiltmeters
- Geochemical: GW sampling / analysis, tracer surveys, atmospheric detection, geobotanical hyperspectral
- d. Applicability matched with FEPs (e.g., casing / cement well failure)
- e. Seismic modeling

Suitability of Surface Geophysical Monitoring Techniques by FEPs

Suitability of Geochemical Sampling Monitoring by FEPs

	Pare spire	Prophorton	Square Square	Samuel Services	4	Conteste Conteste	die Grap	Par Borney	/
Fault activation (high pressure)	not likely	х	х	х	х	not likely	not likely	when down-hole	
Hissolution or debydration of seal	not likely	ж	х	х	х	х	х	х	
Casing / cementation failure	х	х	х	х	х	х	х	х	
Deterioration cement plug	ж	ж	ж	х	х	ж	ж	х	
Corresion of casing	ж	ж	х	х	х	х	х	х	
Formation damage due to drilling	not likely	ж	х	х	ж	х	х	х	
Operational well failure	х	ж	ж	х	х	ж	х	х	
fractures seal	possible	x	х	x	х	ж	x	х	

CO₂ Capture Project

Monitoring – Geophysical & Geochemical

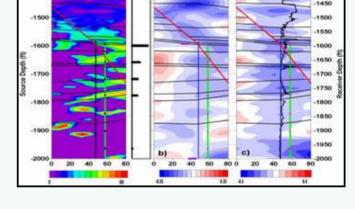
Geophysical

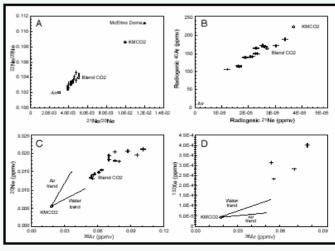
Novel Geophysical Techniques (LBNL)

- Resolution and Applicability of Seismic and Non-Seismic Geophysical Monitoring
- b. Seismic Amplitude Analysis and AVO Detect Changes in Water w/ CO₂
- Gravity, EM, SP Have Variable Resolution but may Offer Significant Cost Saving

Geochemical

Noble Gas Tracers & Costs (LLNL)

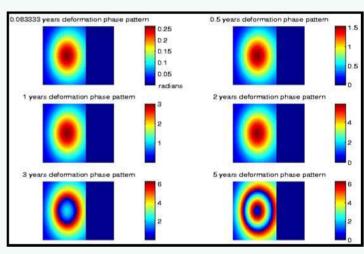

- a. Selection: Cost, Availability, Transport, Distinctiveness (Xe)
- Gas Selection and Quantification for Mabee Field


Image Enhancement Using EM

Distinguishing

Gases Using Noble Gas

Isotopes



Monitoring - Remote

InSAR Resolution (Stanford)

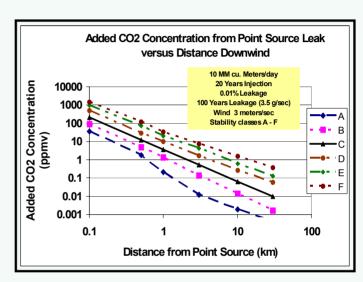
- a. Satellite-Based Theoretical Detection of Ground Movement with Model Injection Project
- b. Pressure Profiles and Deformation Maps
- Sensitivity to Topographical Effects

Deformation Maps from Pressure Profiles

Hyperspectral Geobotanical (LLNL)

- a. Indirect detection of floral responses
- Mammoth Lake Satellite Detection of Tree Kills
- Rangely Field Aerial detection of Long-Term Habitat Redistribution

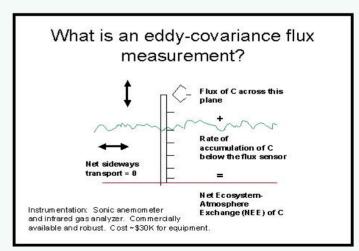
Aerial hyperspectral Image of Rangely CO₂ EOR Field, Colorado


CO₂ Capture Project

Monitoring - Atmospheric

State-of-the-Art Atmospheric (Caltech)

- a. Available Technologies: Applicability for Time / Length and Costs
- b. Detectability of 0.01%/year leak
- Spreadsheet Application to Model
 Detector Applicability Given Point or
 Diffuse Leaks, Flux, Atmospheric
 Conditions (>10 ppm Over Background)


Detectability as a Function of Atmospheric Conditions

Eddy Covariance (Penn State)

- a. Tower-Based Laser Spectrometry
- Established for CO₂ flux; Suitable for CO₂ storage
- c. Resolution for leak types: 10⁻¹ to 10⁻⁵ kgm⁻²s⁻¹ (Well Failure to Fault, resp.)

Eddy Covariance Concept

Risk Assessment - Comprehensive Methodologies

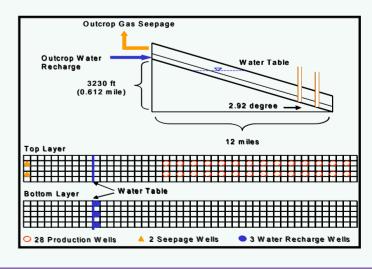
SAMCARDS (TNO)

- Scenario & FEP Analysis, Quantitative Model Development, Consequence Analysis; Performance Assessment
- b. Test on Netherlands On-Offshore Aquifer (No Leakage Over 10000 yr.)

Multicompartment Risk Assessment Model

Represent-

ative Seepage


Model

Probabalistic (INEL)

- 4 Elements & 6 Functional Constituents
 Geomechanics Module
- MS Access Prototype Application w/ Monte Carlo Simulation
- Coal Bed Tests: Predictive Modeling for Well Placement & Operation Parameters
- d. Coal Characterization
- e. History Matching & Future Injection
- Previous Production Effects

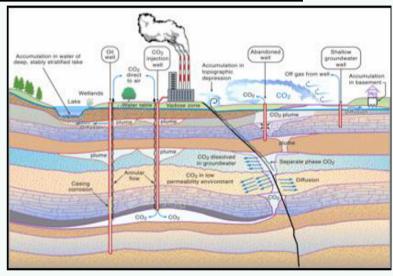
and temporal consistency Base Case Scenario (A. D) Scenario (F. H) Scenario Atmosphere Base case element atm ospheric com partment Shall, Subs Fault (*) (*) erburden servoir/Seal Scenario Element Well/engineering com part ment

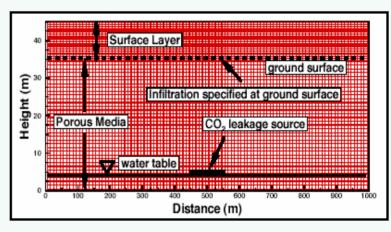
Scenarios based on spatial

<u>Risk Assessment – Seepage Modeling, Intervention & Remediation</u>

Early Detection, Intervention & Remediation (LBNL)

- a. Early Detection Monitoring Approaches
- b. Leakage / Seepage Scenarios
- Existing / Needed Intervention and Remediation Technologies from Other Industries
- d. Site-Specific Contingency Planning


Flow Simulation (LBNL)


- a. Leakage / Seepage Coupling
- b. Flux and Atmospheric Conditions
- c Case Studies

Coupled Subsurface – Surface Dispersion Problem Model

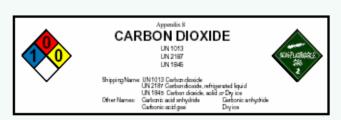
Leakage and seepage

scenarios

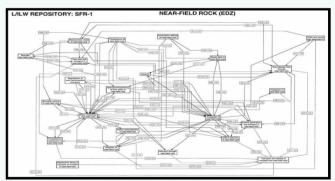
CO₂ Capture Project

Risk Assessment - Environmental / Public Perception

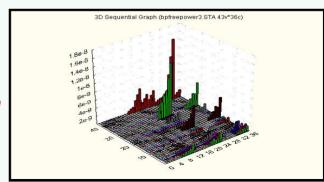
- HSE Review (LBNL)
 - a. Natural Analogs and Industrial Experience
 - **b.** Regulatory Framework and HSE Effects
 - c. Magnitude of Hazard & Principal Risks
 - Regulatory Paradigms & Risk Assessment


Nuclear Storage Lessons Learned

- a. Not Comparable in Hazard Level but Lessons from Technical Assessment and Stakeholder Engagement
- b. Technical Review of Gas Migration


Subsurface Ecosystems (Princeton)

- a. NGO concern for Biodiversity
- CO₂ Affects Microbial Assemblages
 Which Could In Turn Affect Performance
 (Gas Generation, Pore Plugging)


MSDS for CO2

Process Influence Diagram

Microbial Power Simulation

CO₂ cost chain

Cost

$$$3 - 160 /t \longrightarrow $1 - 25/t^* \longrightarrow $2 - 5/t^* = $6 - 190/t**$$

- * Cost principally distance dependant
- ** These numbers are indicative only

Main Positive Results...(1)

- Insight into why natural systems are competent or leaky and how this can be assessed (features, 3D modeling)
- Excellent safety record of CO₂ handling and natural gas storage operations (30+ yr. CO₂ EOR; 90 yr. gas storage)
- Natural gas storage is much more challenging than CO₂ storage (shallow, mobile fluid, seasonal stress, flammable)
- Adaptations of gas storage technologies to CO₂ storage (e.g., competence testing, monitoring, mitigation)
- Potential for natural systems to immobilize CO₂ (mineral transformations; permeability & solubility trapping, bacterial interactions)
- Compatibility of GC reservoirs for CO₂ storage / enhanced recovery (CO₂ storage up to 5X original gas volume)

Main Positive Results...(2)

- Practical guidelines to avoid leakage in ECBM (injector position relative to outcrop and water table)
- Injection and performance not significantly affected by CO₂ impurities (e.g., NOx, SOx, others)
- Potential cost-savings on pipeline transportation (front-end engineering & inhibition)
- Seismic monitoring likely to succeed in most settings (high resolution time lapse)
- Non-seismic monitoring may have adequate resolution and costeffectiveness (surface & downhole gravity / EM; surface SP)
- Tracer technology versatile for performance & leakage (unique noble gas assemblages & indigenous tracers; early warning capability)

Main Positive Results...(3)

- Instruments to monitor ground movement associated with CO₂ injection may be viable (e.g., InSAR)
- Remote hyperspectral techniques detect CO₂ effects on plants (Mammoth Lake, CA tree kills from volcanic CO₂)
- Resolution and deployment strategies for ground-based monitoring are adequate (e.g., 1% leak; above biological background)
- New tools, scenarios, models and case studies are being developed (FEP based, coupled, case studies)
- Leakage scenarios matched with possible mitigation / remediation solutions (surface, near-surface situations & settings)
- Risk assessment methodologies now up and running.

The SMV Contribution to CO₂ Storage - 1

Establishing the Relevance of Industrial Analogs

- A credible industry analogs HSE review established "relative" risk of CO₂ storage
- The HSE and operational records from these processes were "keyed" to CO₂ storage

Systematic Evaluation Process

- Site evaluation protocols: "Integrity", "Optimization", "Monitoring" and "Risk Assessment"
- Development of theory, experiments, models and simulation
- Performance, economics and tradeoffs issues investigated

ID of Likely Leakage Modes and their Characterization / Quantify / Avoidance / Remediation

- Venue quality is predictable using 3D geologic models and fluid history analysis
- Geologic systems offer several mechanisms of CO₂ immobilization, facilitated by operation methods
- Well failure is a greater than most geologic issues; Engineered and remediative solutions available

Applicability of Monitoring and Verification Technologies for CO₂ Evaluated

- Several technologies applied from various vantage points investigated
- Preferred approaches based on level of development, reliability, cost-effectiveness

Systematic Risk Assessment Methodologies Applicable to CO₂ Storage

- Independently developed, comprehensive methodologies are available
- Leakage scenarios, flow simulation models, intervention & remediation strategies

Technical Networking, Stakeholder Engagement Activities

- Technical workshops with non-CCP participation; Inter-JIP collaboration
- NGO engagement and response to concerns

The SMV Contribution to CO₂ Storage - 2

The CCP-SMV effort has developed methodologies for CO2 storage venue assessment that reduce uncertainty and instill confidence of stakeholders. It has a unique place among related JIPs in that studies comprise a mix of practical industry experience and meticulous academic theory and research. The methodologies employed include those applicable generically and to specific geological storage venue types (e.g., coal, depleted oil and gas, saline aquifers). Networking with other JIPs and NGO engagement has enhanced the program's relevance and increased the likelihood of stakeholder acceptance of CO₂ storage. Continued CCP-SMV efforts will focus on methodology integration, performance / economic issues, networking and development of demonstration projects.

Issues Needing Attention ...(1)

- Some storage venues will require extensive 3D modeling and some testing (particularly aquifers)
- Geomechanical integrity of reservoir / cap rocks and faults / fractures need quantified assessment (esp., depressurization and repressurization; geochemical reactions)
- Well materials integrity is an important issue, particularly in depleted oil fields (workover, remediation, special materials)
- Ultimate storage capacity of depleted oil fields is not fully understood (tradeoffs between oil yield and capacity; "over" pressure)
- ECBM operations may experience operational difficulties (injectivity limitations, CO₂ storage capacity; methane yield)
- Methane may be liberated from reservoir overburden

Issues Needing Attention...(2)

- Transportation costs (pipelines) need to be lower (up to 90% postcapture & compression costs)
- Geophysical monitoring resolution varies by reservoir fluid composition
 & depth (density contrast needs to be significant)
- Geochemical monitoring may be expensive / raise environmental issues (rare noble gas isotopes / CFCs, PFCs, SF₆)
- Remote / aerial detection applicability? (needs to be expanded to direct detection and secondary on microbes & minerals?)
- Risk assessment methodologies reflect reality? (difficult to test; analogs)
- Present intervention / remediation technology applicable? (more R&D needed)

Present Technology & Process Gaps / CCP2 Solutions

Integrity

- Geologic Systems Analog development: Natural gas and / or EOR
- Engineered Systems Well material resistance; Failure scenarios

Optimization

- Storage Venue Characterization Coupled Geochemical / Geomechanical
- Operations Injection rate / location; Storage performance
- -Economics EOR strategies
- Abandonment Performance criteria for liability release

Monitoring

- Subsurface Imaging Cost-effective alternatives
- Remote Detection Direct approaches
- Monitoring Wells Dual use wells; Compartments and breakthrough prediction

Risk Assessment

- -Existing methodology evaluation and testing
- -- Quantitative bracketing of risk relative to familiar hazards

Demonstrations

- Test CCP concepts & technologies
- Alberta Basin ECBM, In-Salah aquifer/EGR, Teapot Dome Engr. Leak, Castor

Networking

- North American, European, Australian JIPs