### **CO2 Capture Project**

#### Post Combustion CO<sub>2</sub> Removal Cost Efficient Design & Integration Study

Robert Chu Nexant, Inc.

#### Funded by the CO2 Capture Project and the Research Council of Norway

October 14/15, 2003

() Nexant

This presentation was prepared with the support of the Research Council of Norway/Klimatek under Awaard No. 144737/228. Any opinions, findings, conclusions or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the Klimatek.

www.co2captureproject.org

10/10/03

### NGCC Post Combustion CO<sub>2</sub> Removal "Cost Efficient Design & Integration Study"

#### Statoil Contract No. 4500478718

CCP Manager

Daniel Chinn

ChevronTexaco

Principal Authors

Robert Chu Gerald N. Choi Bruce D. Degen Nexant Inc. Nexant Inc. Bechtel



#### **Presentation Outline**

- Objective
- Design Criteria & Design Basis
- Study Methodology
- Base Case Add-on Amine Plant Design
- Cost Cutting Ideas Generation & Trade-off Evaluation
- Alternate Low Cost Add-on Amine Plant Design
- Add-on Amine Plant Capital Cost & Utility Demand Comparison
- Low Cost Alternate Design Uncertainties
- Integrated NGCC/Low Cost Alt Amine scheme selection & design
- Integrated Scheme Capital Cost & Utility Demand Comparison
- Integrated Design Uncertainties
- Conclusions

(6) N (2)

# Study Objective and CO<sub>2</sub> Removal Plant Boundary Defined

#### **CCP** Objective:

• Identify alternate designs to reduce Capital and Operating Cost of CO<sub>2</sub> Removal from NGCC flue gas.

#### CO<sub>2</sub> Removal Plant Boundary:

- Flue Gas Feed from HRSG outlet
- CO<sub>2</sub> Product at Compression outlet, exclude pipeline and final disposal facilities.



### CO<sub>2</sub> Removal Plant as 'Added-On' to NGCC Power Plant – Design Criteria

- Base Case and Low-Cost Alternative CO<sub>2</sub> Removal Plants shall be designed as 'added-on' to an existing NGCC power plant.
- Added-on designs are considered near-term options (I.e., can be implemented in 3-to-10 years)
- Base Case shall be designed to meet API and Refining specifications.
- Low-Cost Alternative CO<sub>2</sub> shall be designed assuming non-critical service.

### *CO*<sub>2</sub>*Removal as an Integrated Plant to a NGCC Power Plant – Design Criteria*

- Integrated NGCC and Low-Cost Alternative CO<sub>2</sub> Removal plant shall be designed to operate as a single plant.
- Integrated designs are considered to be long-term options (over 10 years away). Extensive equipment development efforts will be needed.

(5) N (2)

### **Design Basis**

- Norwegian Coastal Site.
- CO<sub>2</sub> Product Specifications:
  - 220 barg and 60 °C B/L Pressure and Temp
  - 50 ppmv maximum moisture
- Once-through Seawater Cooling
  - 11 °C supply temperature
  - 22 °C maximum return temperature

### Study Methodology

- Brainstorm to generate cost reduction ideas.
- Perform qualitative screening analysis to select ideas for quantitative trade-off analysis.
- Develop Base Case design and cost estimate.
- Perform quantitative trade-off analysis on screened ideas to determine feasibilities.
- Select feasible ideas and develop Alternate Low-Cost design and cost estimate.
- Select integration ideas and develop Integrated NGCC/Low-Cost Plant design and cost estimate.

### Base Case Amine Plant Design

- 86% CO<sub>2</sub> removal from 400 MW NGCC flue gas.
- 30 wt% MEA based CO<sub>2</sub> removal process.
- H&M balances and equip sizing from T-Sweet, Amsim, and inhouse spreadsheet models.
- Major equipment factored cost estimate. Equip costs are per vendor quotations, ICARUS predictions, and in-house historical data.
- Bechtel's low-cost PowerLine 350 MW CCGT Power Plant, modified for this study with net power output of 385 MW, will serve as the Base Case power plant.



16 N (2)

#### **Base Case Amine Block Flow Diagram**



#### () Nexant

10/10/03

CHU\_Oct\_14\_03\_Rev\_2

#### **Base Case Amine Flow Scheme**



() Nexant

10/10/03

#### **Base Case CO<sub>2</sub> Compression Flow Scheme**



() Nexant

#### **Brainstorm Results**

- Generated 64 ideas.
- Rejected 39 through screening because not feasible, not practical, or redundant.
- 7 to be considered during the Integrated NGCC/CO<sub>2</sub> Removal design.
- Performed 18 trade-off analysis for possible implementation in Low-Cost Alternative scheme.



### Trade-Off Analysis Results

- 13 of the 18 ideas evaluated deem un-feasible.
- 5 were selected for implementation in the Low-Cost Alternative scheme:
  - Eliminate flue gas cooling.
  - Depressure hot lean amine with ejector.
  - Use plate & frame exchangers.
  - Use ANSI pumps instead of API pumps.
  - Use structured packing in Absorber.
- Added 6<sup>th</sup> idea: use single train CO<sub>2</sub> Compression.

### Low-Cost Alternative Design

- 30 wt% MEA based CO<sub>2</sub> removal process.
- Implemented the 6 recommendations from the tradeoff analysis.
- Identical H&M balances and equipment sizing procedures as Base Case.
- Identical cost estimate procedures as Base Case.
- Identical NGCC Power Plant design as Base Case.



#### Low Cost Amine Block Flow Diagram



CHU\_Oct\_14\_03\_Rev\_2

#### () Nexant

10/10/03

#### Low Cost Amine Flow Scheme



#### () Nexant

10/10/03

CHU\_Oct\_14\_03\_Rev\_2

### Added-On CO<sub>2</sub> Removal – Utility Demands

|                                       | Base Case | Low-Cost |
|---------------------------------------|-----------|----------|
| <u>Utility Demands:</u>               |           |          |
| Steam Import, mT/h                    | 238       | 201      |
| Power Import, MW                      | 20        | 19       |
| Condensate Export, m <sup>3</sup> /h  | 177       | 147      |
| SW Cooling Duty, 10 <sup>6</sup> KJ/h | 623       | 550      |
| CO <sub>2</sub> Recovered, mT/D       | 2,850     | 2,850    |

### **NGCC Performances**

|                                       | Design | Base Case | Low-Cost |
|---------------------------------------|--------|-----------|----------|
| Power Export, MW:                     |        |           |          |
| To CO2 Removal                        | 0      | 20        | 19       |
| To Grid                               | 385    | 314       | 323      |
| Steam Export, mT/h                    | 0      | 238       | 201      |
| Condensate Import, m <sup>3</sup> /h  | 0      | 177       | 147      |
| SW Cooling Duty, 10 <sup>6</sup> KJ/h | 824    | 358       | 432      |
| Nat Gas Burned, MW(LHV)               | 687    | 687       | 687      |
| CO <sub>2</sub> Generated, mT/D       | 3,314  | 3,314     | 3,314    |

#### () Nexant

Low-Cost Alternative Design – Performance Verification Required

- Absorption performance without flue gas cooling.
- Structure packing absorption performance.
- Local Codes & Standards requirement on using ANSI pumps instead of API pumps.

() Nex(

### **Integrated Scheme Selection**

- 5 of the 7 integration ideas judged to be infeasible.
- 2 were implemented in the Integrated NGCC/Low-Cost Alternate Design:
  - Recycle portion of the HRSG flue gas to the GT Air Compressor.
  - Insert Amine Reboiler tube bundles directly in the HRSG.



# Integrated NGCC/Low-Cost Alternative Design

- 30 wt% MEA based CO<sub>2</sub> removal process.
- Recycled no more than 50% of the HRSG flue gas to maintain minimum 13 vol% O<sub>2</sub> in combustion air mixture.
- Cooled recycle flue gas to 27 °C before return to air compressor.
- NGCC Power Plant HRSG, STG, and surface condenser sizes and costs were reduced to match the smaller power plant loads.



#### **Integrated Design Block Flow Diagram**



CHU\_Oct\_14\_03\_Rev\_2

#### 10/10/03

#### () Nexant

### Integrated Scheme – CO<sub>2</sub> Removal Plant Utility Demands

|                                        | Low-Cost   | Integrated Design |  |
|----------------------------------------|------------|-------------------|--|
| CO <sub>2</sub> Removal Utility Demand | <u>ds:</u> |                   |  |
| Steam Import, mT/h                     | 201        | 77                |  |
| Power Import, MW                       | 19         | 19                |  |
| Condensate Export, m <sup>3</sup> /h   | 147        | 32                |  |
| SW Cooling Duty, 10 <sup>6</sup> KJ/h  | 550        | 501               |  |
|                                        |            |                   |  |
| CO <sub>2</sub> Recovered, mT/D        | 2,85       | 0 2,838           |  |



### NGCC Performance

|                                       | <u>Design</u> | Low-Cost | Integrated |
|---------------------------------------|---------------|----------|------------|
| Power Export, MW:                     |               |          |            |
| To CO2 Removal                        | 0             | 19       | 19         |
| To Grid                               | 385           | 323      | 325        |
| Steam Export, mT/h                    | 0             | 201      | 77         |
| Condensate Import, m <sup>3</sup> /h  | 0             | 147      | 32         |
| SW Cooling Duty, 10 <sup>6</sup> KJ/h | 824           | 432      | 621        |
| Nat Gas Burned, MW(LHV)               | 687           | 687      | 684        |
| CO <sub>2</sub> Generated, mT/D       | 3,314         | 3,314    | 3,300      |

## Integrated Design – Performance Verification Needed

- Confirm with Gas Turbine vendors on the feasibility of recycling flue gas back to the air compressor, and of operating the combustor continuously at 13% oxygen.
- Verify with HRSG vendor that the amine reboiler tube skin temperature can be kept below 145 °C to avoid excess amine degradation.
- Verify regulatory and insurance requirement regarding to heat amine solutions in HRSG.



### **Conclusions**

- Add-On MEA-based CO<sub>2</sub> Removal plants capital cost can be reduced by:
  - utilizing P&F exchangers, structure packing, and ANSI pumps.
  - by integrating the NGCC and the CO<sub>2</sub> Removal plants
- Operating cost can be reduced.
- Further reduction in costs would require solvent changes.

