

Norcap Seminiar October 14-15, 2003

Radical Ideas,
Post Combustion Working Group CCP
Mariette Knaap, Shell Global Solutions, Rijswijk,
the Netherlands
presented by Tom Mikus, Shell Global Solutions,
Houston, USA

CO2 Capture from Flue Gas

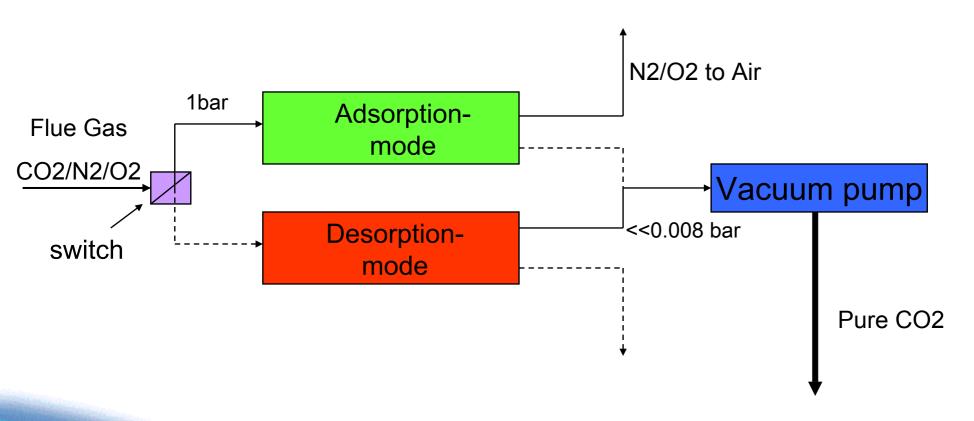
- CO2 Capture from Flue Gas
 - Currently, 2 major commercial processes based on amines
 - Mitsubishi Heavy Industries (KS solvents)
 - Fluor Daniel (Econ-Amine solvents)
- Difficulties:
 - Presence of oxygen in flue gas: corrosion issues
 - Flue gas is at atmospheric pressure >
 - Extremely low driving force for CO2/ flue gas seperation
- Result:
 - High cost of CO2 capture from flue gas

CO2 Capture from Flue Gas: Advantages

- Low amount of parasitic CO2 (10-15% or lower)
- End-of-pipe solution
 - Can be applied to existing powerplants and systems
- No need for new gas-turbine developments etc.

Starting Point

- Middle 2003
 - Clear: Major Breakthroughs in Post Combustion Technology: Difficult
- Need for Radical New Ideas
 - 2 Literature Studies performed and evaluated
 - Over 1000 references reviewed
- 2 Themes identified
 - Flue gas recycle to gas turbine
 - Vacuum swing adsorption



Flue gas recycle

- Flue gas recycle
 - Boosts CO2 from 4% to 8% in gas turbine flue gas
 - Proposed in IEA report PH3/14
 - Potentially cost reduction when applied to KS-1 solvent, based on Mitsubishi Heavy Industry quotes
 - Integrated into the CCP-Nexant Study:
 - Evaluated for MEA system as by Fluor Daniel

Vacuum Swing Adsorption

Vacuum Swing Adsorption

- Several vessels alternating in adsorption/desorption mode
- Adsorption: CO2 adsorbed on a sorbent
 - P(CO2) = 0.04 –0.08 bar at inlet vessel
 - P(CO2) = 0.004-0.008 bar at outlet vessel
- Desorption: CO2 desorbed under Vacuum,
 - Very low vacuum pressure needed:
 - Sufficient desorption driving force needed, p(vac)<<0.008 bar
 - Pressure drop over sorbent in vessel
 - Desorption energy required

Feasibility VSA

- Advantage:
 - No thermal energy needed, only mechanical energy
 - No oxygen problems
- Disadvantage:
 - Huge vacuum pumps needed:
 - high capital and electricity costs

Feasibility VSA II

- Should we even consider a VSA system?
 - Vendors contacted: UOP, Engelhard
 - →yes, it may work
 - → Universities(Twente, NL), Institutes (ARI) consulted
 - →Yes it may work

Trends in the R&D world-wide

- New sorbents for CO2 capture from flue gas are being developed all the time, evidenced by:
 - Internal Post-Combustion CCP-work
 - R&D groups in Japan, USA, China, Europe
 - Literature searches, IEA conferences, etc.

Cost effective VSA system

- Assessment by Post Combustion Team
- Regenerative systems:
 - Cost are picked up at the desorption side
 - Most research focusses on adsorption side
 - Assessment of newly developed sorbents needed
 - Investigate: What is an optimal sorbent?
 - What are and what determines the cost of an effective system?

What is an optimal sorbent?

- What determines an optimal sorbent?
- Trade-offs
 - Adsorption:
 - High capacity, fast adsorption → high affinity for sorbent
 - Desorption:
 - Low desorption energy, fast desorption → low affinity for sorbent
 - Other issues:
 - Low pressure-drop for very large beds
 - high purity of CO2 product > 95%, while CO2 is on the adsorption side

Future Projects

- Model and assess a vacuum swing, adsorption-desorption system
 - Find properties of an optimal sorbent
 - Assess if cost-effective system can be found
- Resulting
 - Gives tool to assess newly developed sorbents
 - Sets direction for research groups in sorbents development
 - By-result: knowledge on vacuum regeneration can be applied in
 - Membrane systems
 - Transport assisted membrane systems

- Post Combustion Technology:
 - Ease of application: End-of-pipe
 - Difficult to find break-throughs
- Vacuum Swing Adsorption for CO2 capture from flue gas
 - Technically feasible
 - Has potential for cost reduction
- Study for optimal sorbent properties and simple modelling of the system needed to
 - Assess potential for cost reduction
 - Assess potential for break-through technology in CO2 capture
 - Set directions for current & future R&D in adsorption at universities, institutes etc.