

This presentation

- Approach
- Challenges
- Status
- Remaining work

Approach

- Capture technologies
 cost-reducing development of pre/oxy/post- technology options
 within the context of ..
- "Scenarios"
 or representative, real-life industrial plant applications
- "Baseline"
 capture technologies (mainly post-comb/ amine-solutions)
 established as benchmarks in evaluating ...
- New or Advanced Technologies' capture performance and cost reduction potentials

CCP Scenarios

<u>Scenario</u>	Fuel Source	CO ₂ Source	Geologic Sink	<u>Location</u>
Refinery (existing)	Refinery Fuel Gas & Liquids	Heaters & Boilers	Storage	UK Refinery
<u>Large</u> <u>Gas Turbines</u> (new/ non-built)	Natural Gas	Large Electric Power Generation (CCGT)	Storage	Western Norway
<u>Distributed Gas</u> <u>Turbines</u> (existing)	Natural Gas	Small Distributed turbines	Storage	Alaska North Slope
Gasification (new/ non-built)	Solid gasification (petroleum coke)	Steam, H ₂ , & Electricity Cogeneration	Storage	Western Canada

"Scenario-Technology matrix"

	Alaska		Canada		EU Re	EU Refinery		Norway	
	New	Retro	New	Retro	New	Retro	New	Retro	
Post-Combustion									
ESA	Hi	Hi	H i(2)		Нi	Нi	Hi		
MHI/Kvaerner	Hi	Hi	N/A (3)		Hi	Нi	Ηi		
HydroChannel	Hi	Hi	N /A		Нi	Нi	Нi		
Radical Chem	Lo/Med (4)	Lo/Med (4)	Lo/Med (4)		Lo/Med (4)	Lo/Med (4)	Lo/Med (4)		
ABB TSA	Hi	Hi	Med		Нi	Нi	Hi		
U n it O p tim is a tio n	M e d iu m	Medium	Low		Medium	Medium	Medium		
Reduced Standards (1)	M e d iu m	Medium	Low		Medium	Medium	Medium		
Pre-Combustion									
Baseline	N/A	N/A	Нi		N/A	N /A	N /A		
W G S Membrane	Hi	Hi	Нi		Hi	Ηi	Medium		
Mem brane Reform er	Hi	Hi	Medium		Нi	Нi	Hi		
VLS ATR	Hi	Hi	N/A		Нi	N /A	N /A		
Compact Refomer	Low	Low	Low		Нi	Low	Low		
Membrane contactor	Hi	Hi	Нi		Нi	Нi	Нi		
ESA	Hi	Hi	Нi		Нi	Нi	Hi		
SEWGS	Hi	Hi	Low		Hi	Low	Medium		
ITM/OTM	Medium	M e d iu m	Hi		Medium	Medium	Medium		
Advanced Gasification	M e d iu m	Medium	Нi		Medium	Нi	Low		
IFE	Hi	Hi	Hi		Hi	Нi	Нi		
Standardised PCDC	M e d iu m	M e d iu m	Low		Low	Low	Hi		
OxyFuel									
Baseline	N/A	N/A	N/A		N/A	N /A	N /A		
Boilers/heaters with recycle	N/A	N/A	N/A		Нi	Нi	N /A		
GT with flue gas recycle (HiOx)	Hi	N/A	N/A		N/A	N /A	Нi		
Mem brane boiler (Praxair)	N/A	N/A	N/A		Нi	Low	N /A		
Membrane with GT (AZEP)	Hi	Hi	N/A		N/A	N /A	Нi		
C h e m ical looping	N/A	N/A	N/A		Hi	Low	N /A		
Baselines		x	X			x	X		

Comparing mature & non-mature Technologies

- Estimates and screening basically covering <u>realization phase</u> of technologies
 - i.e not incl. pre-realisationTech. Development/ R&D-costs (blue lines)
 - handles Technologies at various development states similarly
- Partly compensated in CEM-/TaskForce work by
 - qualitative/ semi-quantitative scoring on Tech.devt. aspects
 - introducing "current" and "future" states of non-mature technology

Consistency in estimation and screening

Transforming a multitude of individual Technology studies into a comparable and quantified set of Scen-Tech options

- Integrating capture technologies into scenarios
- Calibrating physical scopes and capacities
- Capex vs. opex tradeoffs
- Capex & opex estimation methods and assumptions
- Consistent CO2-cost evaluation

In 2002 an internal Tech Screen TaskForce was established to provide an early picture of New Capture Techs' performance

Task Force 2002 work

Cost Estimation challenge: Physical scope and boundaries

- Define physical <u>Scope</u> of "Scenario-Technology case"
 - Basic plant
 - Capture Technology units
 - Other processing units
 - Site supplies and utilities
- Estimate total S-T <u>Capex</u>
 - Equipment costs
 - * cost "add-on factors"
 - = Total installed cost ("base estimate")
 - * contingency factor
 - = Total installed cost ("50/50-estimate")
- Estimate total S-T <u>Opex</u>
 - Energy, utility, supplies, manning needs (volumes)
 - * unit costs, rates, prices
 - = Total Opex

Common Economic Screening model

- Multi-case Scen-Tech <u>data-compiler</u> and CO2-cost <u>calculation</u> & <u>screening</u> tool
 - processed technical and cost estimate inputs from "outside"
 - not a single-case integrated engineering/ estimation/ CO2-cost model

General economic assumptions							
Scenario:							
Scenario & technology input data	Uncontrol	Baseline	NewTech 1	NewTech 2	NewTech 3		
Summary economics							
Overall technology scoring							
Intermediate economics							

Economic screening criteria - CO2 avoided cost

Summary work

- Final CCP reports will document performance and cost of a large package of Capture Tech. Options
- Will not make any definite selection at this stage
- Our documentation may form a new and updated basis for further Technology development efforts and priorities

Apr/

May'03

"Scenario 4"Tech's

(Contr. estimates)

No of

Dec

'03

Sept/

Oct'03