

This presentation was prepared with the support of the Research Council of Norway /Klimatek under Award No. 144737/228. Any opinions, findings, conclusions or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the Klimatek.

<u>CO₂ Properties and Transportation</u>

Torleif Weydahl SINTEF Energy Research Geir Heggum Reinertsen Engineering

Funded by the CO₂ Capture Project and the Research Council of Norway

www.co2captureproject.org

- Documentation of today's practice for CO₂ transportation
- Documentation of existing models and flowsheeting tools for CO₂ behaviour
 - Recommendations and improvement of models based on the findings
 - Development of a wellhead pressure calculation tool
- Challenge today's practice for CO₂ transportation

How is CO₂ transported today?

On-shore transportation of CO₂

- For Enhanced Oil Recovery (EOR). Kinder Morgan, US P
- Acid gas (CO_2 and H_2S) removal, re-injection into wells, Canada

Off-shore transportation of CO₂

- To reduce the CO₂-content in export-gas, avoid emissions to air.
 Sleipner, North Sea
- CO₂ removal from the natural gas at the Hammerfest LNG plant and reinjection into Snøhvit field

CO₂ processing, transport and storage

CO₂ compression, density calculation

CO₂ dehydration, precipitation of water

Solution of water calcualted by HYSYS

CO₂ transport, precipitation of water

Can we rely on the Thermodynamic models?

- CO₂ properties (density)
 - Experimental data (NIST)
 - Acceptable performance with the Lee Kesler model
 - Flowsheeting tools can however contain bugs \underline{P}
- Water solubility in pure CO₂
 - Some data
 - Acceptable model performance with adjusted binary coefficient (SRK) <u>P1</u>
- Water solubility in mixtures of CO₂ and impurities as CH₄, N₂, H₂S and amines
 - Little or insufficient amount of data
 - Results for 5% CH_4

Hydrate formation in CO₂

- With free water present in the system there is a possibility for hydrate formation
- By avoiding free water in the pipeline, the hydrate problem is eliminated
- By keeping the cooling water temperature above 10° (C), hydrate formation in the cooler is prevented

CO₂ transport, new developed tool

Recommendations and further work

- From comparison with data:
 - Lee Kesler for density calculations
 - SRK with adjusted binary coefficients for calculations of solubility of water in CO₂
- Further work is needed to provide thermodynamic data for water solubility in CO₂-mixtures with impurities

Safe and cost effective CO₂ transport in pipelines

Water removal, to what level?

- Free water gives
 - hydrate formation
 - corrosion
- Kinder Morgan requirements for CO₂ in pipelines used for EOR (New Mexico) is maximum 600 ppm water
- 600ppm water content is achievable by cooling with seawater at 10°C and free-water knockout (scrubbers)
- → Reliable thermodynamic models are necessary for accurately prediction of solubility

Handling composition ranges and impurities

1) Gas compression, cooling and dehydration

recommended for high contents of Hydrocarbons and Nitrogen

due to vaporisation of volatile components during condensation 2) Compression, cooling, dehydration, condensation and pumping

recommended for low contents of Hydrocarbons and Nitrogen

10% lower operational costs compared to gas compression

A selected case, compression

Simulation input:

- Seawater cooling temperature: 10°C
- Gas temperature out of cooler: 15°C
- Gas pressure at pipeline inlet: 150 bara
- Composition: 4.5 %
 CH₄, 0.5% H₂O in CO₂

Simulation result:

- Water content reduced to approx. 600 ppm
- by cooling and free water knock-out, only

A selected case, transportation and storage

Simulation input:

- Pipeline length: 170 km
- Water depth at injection wellhead: 320 m
- Mass flow 30 kg/s
- Reservoir depth: 2700 m
- Res. pressure: 273 bara

Simulation result:

- Minimum CO₂ temp. and pressure at injection wellhead
 - ≻ + 5°C
 - 85 bara
- Lower limit for free water precipitation approx. 1300 ppm
- → No free water in the pipeline for this case

CO₂ Pipeline Transportation

- High cooling medium temperature
 - e.g. air at 20 °C
- Low pressure at injection wellhead
 - deep reservoir
 - low reservoir pressure
 - Low ambient temperature
- Tend to increase free water precipitation in the pipeline
- Additional drying may be required
- Mol sieve adsorption at 2nd stage

Drying

Additional drying is required for

CO₂ Pipeline Transportation

- Long distance to injection point
- High reservoir pressure
- Low static head
 - shallow reservoir depth
 - shallow water depth

- High pressure requirement at pipeline inlet
- Increased number of compression stages
- Increased costs (Capex and Opex)

Compression

Material evaluation and corrosion protection

- Significant corrosion on carbon steel in a water phase saturated with CO₂
- Significant corrosion on carbon steel in a water phase containing H₂S
- Corrosion protection in offshore buried pipes
 - Coating with Fusion bonded epoxy (FBE) and Polypropylene (PP)
 - Cathodic protection
- Ordinary Carbon steel pipelines can be used for temperatures above -46 °C

Recommendations and further work

- Cooling water temp. not below 10°C, due to risk of local hydrate formation in the coolers
- In principle, ordinary Carbon steel pipelines can be used for temperatures above -46 °C
- Further work needed wrt. minimum design temperature dry ice at atm. pressure -79°C
- Further work to establish know-how on operation of process equipment with CO₂-mixtures

Thank you!

Solubility of water in CO₂ at 25°C

Density of pure CO₂

Solubility of water in CO₂ calculated by HYSYS

Solution of water calcualted by HYSYS

Water solubility in CO₂

Hydrate formation in CO₂

Qualifying the tools

Use of PRO-II

US CO₂ Projects, Sources, and Distribution

US CO₂ Projects, Sources, and Distribution

