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Chapter 21

GRACE: DEVELOPMENT OF SUPPORTED PALLADIUM
ALLOY MEMBRANES

Hallgeir Klette, Henrik Raeder, Yngve Larring and Rune Bredesen

SINTEF, P.O. Box 124 Blindern, NO-0314 Oslo, Norway

ABSTRACT

The present study reports development and testing of flat and tubular supported palladium alloy membrane
modules at SINTEF. Membranes with thickness in the range of 1 mm have been prepared by a two-stage
magnetron sputter process using a single crystal silicon wafer as intermediate support and a wire mesh or
porous material as final support. Testing of the hydrogen flux through the tubular membranes at 3008C has
shown that permeance values of about 3 £ 1026 mol/(m2 s Pa) can be attained. For a flat membrane, peak
permeance values of about 6.8 £ 1026 mol/(m2 s Pa) was attained at 300 8C. The membranes are able to
separate hydrogen gas from nitrogen gas with 100% selectivity within the detection limits of the equipment.
Tubular membrane supports that have been reinforced by a steel insert have been tested up to 14 bar
transmembrane pressure. Although the selectivity drops at high pressure, the tests show that the membrane
film does not disintegrate at high pressure even at 300 8C. Some of the membranes described have been
shipped to ITM-CNR in Italy for catalytic reactor testing as a part of the GRACE program.

INTRODUCTION

The Grangemouth Advanced CO2 Capture Project (GRACE) was a two-year (2002–2003) research
program concerned with the capture of CO2 from a UK refinery site. One of the technologies that were
pursued in the program was the development of hydrogen gas separation by membrane technology. Such
technology can be used to enhance the water gas shift reaction for CO2 capture by pre-combustion
decarbonisation of refinery fuel gas.

Palladium alloy membranes for separation and purification of hydrogen gas have been studied world-wide
for several decades. The main challenge has been to prepare thin and defect free membranes with sufficient
stability. The need for very thin membranes, less than 5 mm thick, is due to the double effect of this
parameter on cost. First, the hydrogen flux is inversely proportional to the membrane thickness as long as
the transport is limited by diffusion of protons through the metal, and secondly the material costs of the
membrane goes drastically down as the thickness is reduced. A large number of different methods have been
investigated for preparation of thin membranes supported on either porous substrates or dense highly
permeable metal substrates. Even though significant progress has been made during the last 10 years, many
problems still exist that hinder up-scaling and broad industrial use. These problems are often linked to the
preparation method, support-membrane integration issues and reactions with the ambient atmosphere.
While the last problem must be solved by careful control of the operation conditions and development of
more stable alloys, the two first problems have been focused in the recent preparation method development
that is the subject of this chapter.

Before the GRACE program started, a special technology for preparation of supported palladium alloy
membranes had been developed by SINTEF [1]. This work was continued in the GRACE program, leading
to the development of three tubular membrane module designs. The objective of the present paper is to
report the later stages of SINTEF’s own development and testing of a flat supported membrane, as well as
the development and testing of the tubular membrane modules prepared for the GRACE program. Some of
the membranes described in this paper have been shipped to ITM-CNR in Italy for catalytic reactor testing.
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The membrane preparation method is a two stage process. The thin palladium alloy film is first deposited by
magnetron sputtering onto the surface of a single crystal silicon wafer. The obtained film, which typically
has a thickness between 1 and 5 mm, is defect free. In a second process stage the film is released from the
silicon wafer and placed onto the membrane support. The membrane support can be a woven mesh or a
porous material.

Membrane thickness in the range of 1 mm can be produced without defects. The film thickness and
composition can easily be controlled in the sputter process. The film may be placed on optimised supports
that have pore size-to-film thickness ratios in the range 0.5–5. In this way, the film can be much thinner (or
the pores much larger) than with other methods typically requiring ratios in the range 0.005–0.01. This
limits the mass transport resistance of the support. The design of the support–membrane interface is very
flexible because the support properties can be optimised uniquely for supporting the membrane.

EXPERIMENTAL/STUDY METHODOLOGY

Palladium Alloy Film Preparation
The palladium alloy film was prepared by sputter deposition onto a standard single crystal silicon wafer
using a DC-magnetron sputter system and a target of the same composition as the film. After deposition, the
film had a thickness of 1.3 mm. The film was then removed mechanically from the silicon substrate and
transferred by hand to the woven or porous membrane support. The procedure is described in Ref. [1].

Module Assembly
Four different module geometries were assembled. The first geometry was prepared by placing a 1 mm
Pd/Ag23% palladium alloy film onto a flat 316L stainless steel woven wire mesh supplied by Fuji Filter
(Japan) and sealed with a copper ring as shown in Figure 1.

Figure 1: Application of the palladium alloy membrane film onto a flat stainless steel mesh support.
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The mesh of the woven support was very dense; the diameter of the wires was 15 mm and they were
separated by 15–30 mm depending on direction. During testing, the foil deformed to follow the shape of the
woven wire mesh as shown in Figure 2 without formation of cracks or pin-holes.

This observation indicates that use of substrates with high roughness and surface topography is possible, as
long as the size of the open structures of the surface is small. Surface topography may lead to larger surface
area that in turn may lead to increased flux.

The second geometry was prepared by wrapping a 1 mm Pd/Ag23% palladium alloy film around a porous
“AccuSep” 316-L stainless steel tubular support provided by Pall Corporation (USA). The tube had a length
of 20 mm, external diameter 12 mm and wall thickness about 1 mm. Before applying the membrane film,
stainless steel tube ends and connections were welded onto the porous tube ends. The membrane foil was
wrapped with 5–10 mm overlap. The overlapping foils joined to form a gas-tight seal at around 300 8C by
inter-metal diffusion. Several versions of sealing and connection systems were developed. One example is
shown in Figure 3, where the membrane is sealed to the stainless steel tube ends by a double set of steel
wedge rings.

Figure 2: Close-up photograph of the palladium alloy film supported by wire mesh after testing. Although

no cracking of the film was observed, considerable deformation has taken place.

Figure 3: Example of a tubular membrane module shown schematically. The tube diameter is 12 mm and

the active length is about 20 mm.
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When using a membrane module of this type in a reactor with a heterogeneous catalyst, e.g. in the water gas
shift reaction, the solid catalyst is likely to be placed close to the membrane film on the high pressure side of the
module. In a configuration like this it may be necessary to protect the membrane from direct mechanical contact
with the catalyst to avoid mechanical and chemical interaction. The third geometry module was prepared with
this in mind. A cylindrical stainless steel woven mesh tube was placed around the membrane with a distance of
about 1 mm between the alloy membrane and the mesh tube, which was fixed to the steel sealing rings. The
woven mesh had a thread diameter of about 30 mm. Except for this protective tube, the module was similar to
the second geometry module. A photograph of a third geometry module is shown in Figure 4.

The fourth module geometry was designed to withstand transmembrane pressures up to 15 bar. To
strengthen the module, an internal reinforcement tube made of stainless steel was inserted inside the porous
support tube. To facilitate the flow of hydrogen gas along and through the reinforcement tube, axial and
concentric grooves and penetrating holes had been milled into it. Except for this reinforcement tube, the
module was similar to the second geometry module. The four module geometries are shown schematically
in Figure 5a–d.

Figure 4: Photograph of a tubular module with the external protective wire mesh installed.

Figure 5: Schematic illustration of the four membrane module geometries; (a) flat, (b) tubular, (c) tubular

with external protection tube, and (d) tubular with internal reinforcement for transmembrane pressures up to

15 bar.
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Permeation Testing
Figure 6 shows the experimental set-up that was used for permeation testing experiments. The membrane
module was mounted in a stainless steel housing inside a furnace that could be heated above 300 8C. The
feed side of the membrane could be flushed by single gases or mixtures of H2, He and N2. The permeate side
could be flushed by Ar. The compositions of the exhaust gases from the permeate and retentate sides were
monitored by a quadropole mass spectrometer. Before each experiment, the membranes were tested for
leakage at room temperature by supplying He at the feed side and flushing Ar on the permeate side. The
membrane was then heated to 300 8C in flowing Ar on the permeate side and N2 on feed side at 1 bar. In
most experiments, pure H2 at 1 bar was then introduced at one side of the membrane at 3008C. The flow rate
of H2 was measured directly by mass flow meters. He was introduced from time to time at the feed side to
check for leakage. After the measurements the membranes were cooled in N2 and Ar.

RESULTS AND DISCUSSION

Hydrogen permeation measurements of the flat membrane modules showed very high permeance. Values
of 6.8 £ 1026 mol/(m2 s Pa) was attained at 300 8C. At 340 mbar transmembrane pressure difference
the H2 flow through the membrane was 30 ml/(cm2 min) when 100% H2 was applied on the feed-side.

Figure 6: Schematic diagram of the experimental set-up for hydrogen permeation measurements.
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With 88%H2/12%N2, 14.5 ml/(cm2 min) was obtained at the same transmembrane pressure difference. The
given volumes are with reference to NTP, i.e. 0 8C and 1 atm.

Results from similar measurements of tubular membrane modules (the second geometry) are shown in
Figures 7 and 8. Permeance values of about to 3.0 £ 1026 mol/(m2 s Pa) was attained, and no N2 leaks were
detected. This means that the modules had 100% selectivity within the detection limits of the equipment.
Measurements with the protected tubular modules (third geometry) and the reinforced tubular modules
(fourth geometry) showed slightly lower maximum permeances, 0.8 £ 1026 and 2.0 £ 1026 mol/(m2 s Pa),
respectively, probably due to mass transport limitations induced by the protective and reinforcement
structures.

Figure 7: Results from permeation testing of a tubular membrane module of the second geometry:

permeance versus pressure at 300 8C for the membrane in pure hydrogen (diamonds), same membrane after

cycling to room temperature (squares).

Figure 8: Results from permeation testing of a tubular membrane module of the second geometry: flux

versus pressure at 300 8C in pure hyderogen. The same codes are used as in Figure 7.
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The tubular membrane modules with internal reinforcement (the forth geometry) was tested up to 14 bar
transmembrane pressure. In Figures 9 and 10, the H2/N2 separation factor and hydrogen flux is plotted as
functions of pressure at 300 8C. In these measurements, the flow of H2 and N2 on the feed side was kept
constant at 100 ml/min, providing a H2/N2 ratio of one and with an argon flow of 100 ml/min on the
permeate side. In order to let the palladium alloy film relax and adjust to the porous support before being
exposed to hydrogen, the hydrogen was first introduced at 1.5 bar transmembrane pressure. As seen in
Figure 9, the separation factor reached a maximum of 30,000 at 3 bar, then a sudden drop to 700 followed by
a slow reduction to 125 at 14 bar. The leaks that caused this dramatic reduction in separation was localised
by microscopy after the test. The slow increase in the hydrogen flux at higher transmembrane pressure
differences shown in Figure 10 may be attributed to depletion of hydrogen on the membrane surface due to
limitations on the maximum hydrogen feed rate of the experimental set-up.

Figure 9: Results from H2/N2 separation testing of the reinforced membrane modules (of the fourth

geometry) at 300 8C.

Figure 10: Results from hydrogen permeation testing of a reinforced membrane module (fourth geometry):

flux versus pressure at 300 8C. The measurements were carried out with a constant 1:1 mixture of H2/N2 on

the feed side and a constant flow of argon on the permeate side.
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CONCLUSIONS

The present study shows that flat and tubular supported palladium membranes with thickness in the range of
1 mm can be prepared by the two-stage sputter process developed by SINTEF. Testing of the hydrogen flux
through the membranes at 3008C has shown that permeance values of about 3 £ 1026 mol/(m2 s Pa) can be
attained. For a flat membrane, peak permeance values of about to 6.8 £ 1026 mol/(m2 s Pa) was attained at
300 8C. The membranes are able to separate hydrogen gas from nitrogen gas with 100% selectivity within
the detection limits of the equipment. Tubular membrane modules reinforced by steel inserts have been
tested up to 14 bar transmembrane pressure. Although the selectivity drops at high pressure, the tests show
that the membrane film does not disintegrate at high pressure even at 3008C.

RECOMMENDATION

The main challenges in future development of large-scale industrial technology based on the reported
palladium alloy membranes are connected to further investigations of the long term stability of the
membranes and the modules, and to up-scaling in terms of membrane area and production technology.
Therefore, the authors recommend that future work is directed towards verifying and improving the long
term stability in realistic reactor environments at high transmembrane pressures, as well as studies on up-
scaling of the membrane and module production technology. In parallel to this work, the most important
cost driving factors should be identified.
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