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Chapter 1

OVERVIEW OF GEOLOGIC STORAGE OF CO2

Sally M. Benson

Lawrence Berkeley National Laboratory, Berkeley, CA, USA

ABSTRACT

This paper presents an overview of geologic storage of CO2. Topics addressed include the nature and extent
of formations that could be used for geologic storage, the physical and chemical processes responsible for
geologic storage, risks of geologic storage, and demonstration projects underway today. In addition, this
chapter introduces the topics that are covered in this book.

INTRODUCTION

Over the past several hundred years, atmospheric CO2 concentrations have steadily increased and have now
risen to over 370 ppm from the pre-industrial level of 280 ppm. Increases in CO2 concentrations are mainly
attributed to burning of coal, oil, and natural gas for electrical generation, transportation, industrial and
domestic uses. Today, globally, over 20 billion tons of CO2 are emitted into the atmosphere. There is a
growing consensus that increases in CO2 concentrations will disrupt the earth’s climate, cause sea level to
rise enough to flood many low-lying coastal regions and damage sensitive ecosystems. Experts believe that
to avoid significant disruption of the climate system and ecosystems, CO2 concentrations must be stabilized
within the next several decades. At today’s emission rates, atmospheric CO2 concentrations will continue
to grow rapidly and, within 50 years, may exceed the levels needed to protect sensitive ecosystems and
avoid flooding in low-lying coastal areas. This situation is even more urgent when we consider that over
the next 50 years CO2 emissions are expected to double as the developing world’s economies grow and the
standard of living increases. To address this challenge, we need a multi-pronged approach for decreasing
CO2 emissions—more efficient production and use of energy, solar power, wind energy, biomass,
switching to fuel sources with lower or negligible CO2 emissions, and CO2 capture and storage (CCS), the
subject of this book.

CCS is a four-step process where: first, a pure or nearly pure stream of CO2 is separated and captured from
flue gas or other process stream; next it is compressed to about 100 atm; it is then transported to the injection
site; and finally, it is injected deep underground into a geological formation such as an oil and gas reservoir
where it can be safely stored for thousands of years or longer (see Figure 1). Volume I of this two-part book
provides detailed discussion of recent innovations in capture and compression technology. This volume
(Volume II) focuses on transportation and storage-related issues.

That CO2 could be separated from flue gases and stored from the atmosphere emerged in the open literature
in the late 1970s [1,2]. However, it was not until the early 1990s that R&D in CO2 storage began in earnest.
Since that time, however, progress has been accelerating through a combination of industrial, academic, and
public-sector efforts. A number of factors contribute to the rapid progress in this area, specifically:

. industrial experience in the oil, gas, and gas-storage industry can provide the expertise and technology
needed for CO2 transportation, injection, performance assessment, and monitoring;

. several collateral economic benefits are possible, including CO2-enhanced oil and gas recovery and
enhanced coalbed methane recovery;

. suitable geologic formations, including oil, gas, saline, and coal formations are located near many CO2

sources; and
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. geologic analogs such as natural CO2 reservoirs demonstrate that geologic structures can store CO2 over
very long times.

Over the past decade, CCS has emerged as one of the most promising options for deep reductions in CO2

emissions, so much so that, in fact, today 1 million tons of CO2 is being stored annually at the Sleipner
Project beneath the North Sea. Several more commercial projects are underway or in the advanced stage of
planning: the In Salah project in Algeria, the Gorgon Project in Australia, and the Snohvit Project in the
continental shelf offshore of Norway. In addition to these, more are under development.

STORAGE FORMATIONS AND PROCESSES

Sedimentary basins, created by the gradual deposition and compaction of sediments eroded from mountain
ranges, are the mostly likely location for storing CO2. Deposits, as thick as many thousands of meters, have
accumulated in sedimentary basins around the world. Typically, sedimentary basins consist of alternating
layers of coarse (sandstone) and fine-textured sediments (clay, shale, or evaporites). The sandstone layers,
which provide the storage reservoir, have high permeability, allowing the CO2 to be injected into the storage
reservoir. The shale or evaporite layers have very low permeability and act as seals to prevent CO2 from
returning to the surface. Naturally occurring CO2 reservoirs exist in North America, Australia, China, and
Europe, demonstrating that CO2 can be stored underground for millions of years or longer. In addition,
many oil and gas reservoirs also contain large quantities of CO2 confirming that oil and gas reservoirs can
also store CO2 over geologic time scales.

The conceptual framework and opportunity for storage of CO2 in saline formations and depleted oil and gas
formations were presented in early papers by Koide et al. [3–5], Winter and Bergman [6], Van der Meer [7,
8], Gunter et al. [9], Hendriks and Blok [10,11], Holloway and Savage [12], Holt et al. [13], Bachu et al.
[14], Bergman and Winter [15], Omerod [16], and Weir et al. [17]. In 1996, Gunter et al. [18] described a
process by which coalbed methane production could be enhanced while simultaneously storing CO2.
Studies by Byrer and Guthrie [19,20,34] and Stevens et al. [21,22] suggest that worldwide CO2 coalbed
methane recovery may also significantly add to the capacity for geologic storage of CO2. Today, four
principle types of geologic formations are widespread and are considered to have significant potential for
storing large amounts of CO2:

. active and depleted oil reservoirs;

. active and depleted gas reservoirs;

. saline formations; and

. deep coal seams and coalbed methane formations.

Other geologic formations such as marine and arctic hydrates, CO2 reservoirs, mined cavities in salt domes
and oil shale may increase storage capacity or provide niche opportunities but are likely to be developed
only after the storage formations listed above are utilized.

CO2 can be stored in these geologic formations by four principal processes [23,24].

. CO2 can be trapped as a gas or supercritical fluid under a low-permeability cap rock, similar to the way
the natural gas is trapped in gas reservoirs or the gas is stored in aquifer gas storage. Immediately after
CO2 is injected, this is likely to be the most important storage mechanism.

Figure 1: Schematic showing the major steps in the CO2 capture and storage process.
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. CO2 can dissolve into the fluid phase. This mechanism is referred to as solubility trapping. The relative
importance of solubility trapping depends on a large number of factors, such as the sweep efficiency of
CO2 injection, formation of fingers, and the effects of formation heterogeneity.

. CO2 can become trapped as a residual, non-wetting phase in the pore spaces of the rock. This mechanism
is referred to as residual gas trapping. Once the saturation of CO2 drops below the residual “gas”
saturation, it is no longer mobile and consequently will remain trapped. The importance of this trapping
mechanism has only been recognized recently and is expected to contribute significantly to the security
of geologic storage [24].

. CO2 can react, either directly or indirectly, with the minerals and organic matter in the geologic
formations to become part of the solid mineral matrix. Formation of carbonate minerals such as calcite,
siderite, or alumino-carbonates such as dawsonite and adsorption onto coal are examples of mineral
trapping. Mineral trapping will create stable forms of carbon that are unlikely to return to the biosphere
and will increase storage security by eliminating the risk of unexpected leakage of CO2 to the surface.

Over time, the contribution of each of these processes to provide secure long-term storage will change as
illustrated in Figure 2. Initially, physical trapping will be the dominant mechanism for keeping CO2 in the
storage formation. As CO2 migrates away from the injection well it will displace some fraction of the in situ
fluids. Simultaneously, CO2 will dissolve in the pore fluids that are left behind. Over time, as the CO2 plume
grows, larger amount of CO2 can dissolve, thus increasing the extent of solubility trapping. Over very long
periods, small-scale convection cells created by density differences between the CO2 saturated brine and the
in situ fluids will dissolve even more CO2 [25]. The extent and evolution of CO2 trapped as a residual phase
will depend on the petrophysical properties of the storage formation. Recent studies have shown that the
residual saturation may be as high as 20–30% of the pore space. In this case, the CO2 plume tends to be
compact and remains trapped near the injection well. If the residual saturation is much lower, in the range of
5–10%, residual gas trapping will increase over time as the plume migrates over a greater volume. Mineral
tapping is expected to be slow but, over long time scales, may trap a significant fraction of the CO2—the
extent of which will depend on the mineralogy of the formation. Storage formations composed of a large
fraction of feldspar minerals will have a higher degree of mineral trapping.

STORAGE CAPACITY

Several worldwide and national assessments demonstrate the significant potential for geologic storage of
CO2 in saline formations, coal formations, and depleted oil and gas reservoirs [16]. Subsequent studies have
focused on assessing important aspects of regional geologic formations that may be suitable for storage [18,
26–33]. Global storage capacity estimates are summarized in Table 1. While the range of estimates is large,
there is a consensus that the largest potential capacity is in deep saline formations in large sedimentary

Figure 2: Schematic illustrating that residual gas trapping, solubility trapping and mineral trapping

increase storage security over time.
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basins. It is estimated that saline formations have the capacity to accommodate hundreds of years at the
current CO2 emission rates. However, these capacity estimates have not yet been validated by regional or
site-specific field experiments.

EXISTING AND PLANNED CO2 STORAGE PROJECTS

Today there are four active geologic storage projects and at least two more are planned (see Table 2). These
demonstrate the range of current experience with CCS. In all but two of these projects, the source of the CO2

is natural gas. CO2 is separated from the natural gas because some natural gas reservoirs contain too much
CO2 to sell on the open market unless the CO2 is removed first. In addition to these projects, which were
developed for the specific purpose of CCS, about 20 million tons per year of CO2 is injected annually to
recover oil from over 50 oil fields, primarily from carbonate formations in West Texas.

All the CO2 storage projects listed in Table 2 are being used to one degree or another as demonstration
projects. International teams of scientists, funded by private and government sources, are deploying
monitoring technologies, computer simulation models, and risk assessment methods to assess the safety of
these projects, improve our understanding of geologic storage, and develop advanced technologies for

TABLE 1
SUMMARY OF WORLDWIDE STORAGE CAPACITY ESTIMATES

Formation type Capacity estimate
(Gt CO2)

Source

Depleted oil and gas reservoirs ,450 Stevens et al., 2001: GHGT 6, pp. 278–283
Coalbed methane reservoirs 60–150 Stevens et al., 1999: GHGT 5, pp. 175–180
Salt-water filled formations 300–10,000 IEA Greenhouse Gas R&D Programme, 1994 [16]

TABLE 2
SUMMARY OF CURRENT AND PLANNED CCS PROJECTS

Project (operator) Application Mass of CO2

(million tons/year)
Demonstration

activities
Storage

formation

Sleipner, North
Sea (Statoil)

Storage of CO2

stripped from
natural gas

1 (since 1996) Monitoring,
modeling,
best practices

Offshore salt-water
sand formation

Weyburn,
Canada (Encana)

EOR and CO2

storage from
coal gasification

1.7 (since 2000) Monitoring, risk
assessment,
performance
assessment

On-shore oil
reservoir
in carbonate
rock

In Salah,
Algeria (BP)

Storage of CO2

stripped from
natural gas

1 (since 2004) Monitoring,
risk assessment

On-shore gas
reservoir in
sandstone

Gorgon, Australia
(ChevronTexaco)

Storage of CO2

stripped from
natural gas

4 (planned for 2006) To be determined Island salt-water
sandstone
formation

Snohvit, Offshore
Norway (Statoil)

Storage of CO2

stripped from
natural gas

0.7 (planned for 2006) To be determined Offshore salt-water
sandstone
formation

San Juan Basin,
New Mexico
(Burlington)

Enhanced coalbed
methane
production

Performance
assessment,
risk assessment

On-shore coalbed
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monitoring CO2 storage projects. None of these existing projects is as large as would be required to capture
and store the 8 million tons per year of CO2 from a typical 1000 MW coal-fired power plant. However, the
scale-up of individual projects ranging from 1–4 million tons per year to 8 million tons per year should be
achievable and these projects provide substantial experience on which future projects can build.

RESEARCH AND DEVELOPMENT NEEDED TO ADVANCE GEOLOGIC STORAGE

While rapid progress has been made in the development of geologic storage of CO2 since its inception in the
1990s, additional knowledge is needed in a number of areas to support widespread implementation of this
technology. This book addresses many of these topics, which can be broadly grouped under the following topics.

Storage security and integrity. Additional knowledge is needed about the processes that contribute to long-
term storage of CO2. These include physical trapping beneath low-permeability cap rocks, trapping as an
immobile residual phase in the pore spaces of the storage reservoir, and geochemical trapping in fluids or
rocks. Information about and strategies to preserve the long-term integrity of well construction materials are
needed to assure that the wells penetrating the storage reservoir do not fail and provide a short circuit for
CO2 back to the atmosphere. Geomechanical stresses on the cap rock that could compromise the integrity of
the rock by reactivating faults or fractures need to be better understood. The influence of other gases such as
H2S, SOx, and NOx, which may be stored along with CO2 need to be understood. This book addresses all
these issues, both by evaluating existing analogues for CO2 storage, such as naturally occurring CO2

reservoirs, CO2-enhanced oil recovery and natural gas storage, as well as presenting the results of original
research on this topic.

Storage optimization. Geologic storage of CO2 can be optimized economically by combining it with
enhanced oil and gas recovery. Revenues from enhanced oil and gas recovery can be used to offset the cost
of storage, and capital investments can be used to help build the infrastructure for CO2 storage. Optimization
can also be achieved by assuring efficient use of the underground storage space and applying best practices
learned from related activities such as natural gas storage. This book addresses both these issues, by both
evaluating existing analogues for CO2 storage, such as naturally occurring CO2 reservoirs, CO2-enhanced
oil recovery and natural gas storage and presenting the results of original research on this topic.

Monitoring and verification. Monitoring has been identified as one of the highest priority needs to provide
safe and secure storage of CO2. Monitoring CO2 migration in the subsurface plays several diverse and
critical roles in the development and acceptance of geologic storage. First, it is essential for accounting
purposes. That is, it will be necessary to verify the net quantity of CO2 that has been stored in the
subsurface. Second, it is necessary for monitoring sweep efficiency and determining whether the available
storage capacity is being used effectively. Third, it is needed for optimizing EOR and enhanced coalbed
methane recovery. Finally, it is necessary to ensure the safety of storage projects by demonstrating that
CO2 is retained in the formation into which it was injected. This book provides information on monitoring
technologies that can serve all these purposes, by both drawing from relevant experience across a number
of monitoring applications and presenting the results of original research on this topic. Specific topics
include: surface monitoring of rates and compositions of injected and produced gases and liquids;
atmospheric CO2 concentration and flux monitoring; ecosystem monitoring; surface (including 3D seismic
methods), surface-to-borehole, single-well, and cross-borehole time-lapse seismic methods; electrical
methods such as electrical resistance tomography and cross-well electromagnetic methods; reservoir
pressure and temperature measurements; and natural and introduced chemical tracers that will provide
additional information needed to quantify hydrodynamic, solubility, and mineral trapping rates and
processes.

Risk assessment and mitigation. Assessing risks and developing a risk mitigation strategy are an essential
part of the process for selecting and obtaining permits for a geologic storage project. The nature of the risks
must be understood fully. Scenarios for both secure and leaking CO2 storage projects must be developed.
Reliable and accepted methods for quantitative probabilistic risk assessment are needed. In addition,
methods for mitigating risks, including monitoring and remediation must be developed. Over the past
several years, significant progress has been made in this area, particularly with regard to the application of
the features, events, and processes (FEP) methodology for risk characterization and assessment. This book
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describes this methodology and provides examples of its application to a number of storage projects.
Significant progress has also been made in understanding the consequences of leaking geologic storage
projects on ecosystems and humans. Models have been developed to quantify how CO2 behaves when
released into the near surface environment and escapes back to the atmosphere. The potential impact to
underground microbial communities has also been assessed. A compilation of potential remediation
options, based on analogous experience in natural gas storage and disposal of liquid wastes, has also been
developed. Taken together, these studies provide the foundation for risk assessment and mitigation for CO2

storage projects in deep geologic formations.

CONCLUSIONS

Geologic storage of CO2 in underground formations has quickly advanced from a mere concept to a reality.
Significant progress has been made in the critical areas of storage security and integrity, storage optimization,
monitoring and verification, and risk assessment and mitigation. More remains to be accomplished before
widespread application of this technology takes place, but the results of research conducted in this project and
others continue to demonstrate that this technology can make large contributions to reducing CO2

concentration in the atmosphere. This book highlights accomplishments in the areas listed above, and in each
case, identifies additional research and development needed to further advance this technology.
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