CCP completed its programme in 2022 and is no longer in operation. The site is planned to remain open and maintained until 2026 to enable access to information, but it will not be updated.

Register | Login

type     January, 2009

Sensitivity of CO2 migration estimation on reservoir temperature and pressure uncertainty

Preston Jordan and Christine Doughty

The density and viscosity of supercritical CO2 are sensitive to pressure and temperature (PT) while the viscosity of brine is sensitive primarily to temperature. Oil field PT data in the vicinity of WESTCARB’s Phase III injection pilot test site in the southern San Joaquin Valley, California, show a range of PT values, indicating either PT uncertainty or variability. Numerical simulation results across the range of likely PT indicate brine viscosity variation causes virtually no difference in plume evolution and final size, but CO2 density variation causes a large difference. Relative ultimate plume size is almost directly proportional to the relative difference in brine and CO2 density (buoyancy flow). The majority of the difference in plume size occurs during and shortly after the cessation of injection.

© 2008 Elsevier B.V. All rights reserved.

Keywords: geologic carbon storage, pressure temperature sensitivity, buoyancy-driven flow.

Source: Greenhouse Gas Control Technologies (GHGT) conference, 16-20 November 2008

(195 Kb)   Download

 


"Updated In Depth communications tool available - providing spatial perspective on CO₂ storage View...

 

Publication Areas

spacer 59 files view

spacer 74 files view

spacer 76 files view

spacer 31 files view

Publication Areas
Publication Areas

 

 

© Copyright 2015 CCP  

BP logoChevron logo Petrobras logoSuncor logo

CCP4 Participating Organizations