Status and prospects of the Capture Programme
I. Miracca (Eni), M. Cromble (BP), J. Forsyth (BP), C. Lowe (Chevron), G. Torres Moure (Petrobras), M. Iyer (Shell), M. Bohm (Suncor)

Programme Overview
The CO2 Capture Project (CCP) is an award-winning partnership of several major energy companies working to advance the technologies that will underpin the deployment of industrial-scale CO2 capture and storage (CCS).

The CCP is currently in its third phase of activity:
• Phase 1 (CCP, 2001-2004) technology screening/proof of concept – completed
• Phase 2 (CCP, 2004-2009) intensive development – completed
• Phase 3 (CCP, 2008-2013) demonstration – on going

PCO2C Partnership
• Pilot plant testing of novel post-combustion technology at the Energy & Environment Research center of the University of North Dakota (EERC)
• Programme conclusion by December 2012
• Specific focus on application to natural-gas fired power stations
• Extended testing of selected technology specific for the CCP during the first quarter of 2013

About the CCP
The CO2 Capture Project (CCP) is an award-winning partnership of several major energy companies working to advance the technologies that will underpin the deployment of industrial-scale CO2 capture and storage.

For further information on the work of the CO2 Capture Project, please visit: www.co2captureproject.com

Main R&D Projects in CCP

Oxy-fired burners for process heaters
• CFD simulation and pilot testing of conventional John Zink burners operated in oxy-firing mode.
• Project concluded June 2012
 Main results:
 • Heater efficiency increases by 4 (air-preheat) to 15 (no air pre-heat) % points up to 93%
 • Conventional burners may work similarly in oxy-combustion mode
 • NOx formation strongly decreased
 • High air ingress due to negative operating pressure

Membrane Water Gas Shift
• Intensive testing of Pd-alloy membrane tubes and modules developed by Pall
• Construction of base module for a field pilot unit
• Sizing and coating of pilot and commercial unit for refinery application in view of a carbon-free hydrogen-fired refinery

Oxy-fired Technology Demonstrations

Fluid Catalytic Cracking Regenerator
• Pilot FCC unit
 • Location: Sao Mateus do Sul (Brazil)
 • Size: 33 bbl/day of feed (~200 times larger than conventional FCC pilot units)
 • Retrofit to oxy-firing included installation of:
 • Oxygen supply system
 • CO2 recycle system
 • Test duration: September 2011/September 2012
 • Main results:
 • Demonstrated that FCC may work steadily in oxy-firing mode
 • CO2 concentrations > 93% vol. achieved in the flue gas
 • Corrosion problems in the flue gas recycle system identified and solved
 • In oxy-firing mode the unit capacity may be increased by ~10%
 • Economic evaluation confirmed that oxy-firing is competitive with post-combustion for this application

Once-Through Steam Generator
• Partnership including Canoeus Energy, Devon Canada, MEG Energy, Praxair and Statoil
• Co-funding by the Climate Change and Emission Management Corporation of the Province of Alberta
• 50 million BTU/hr commercial OTSG unit owned by Canoeus Energy in Christina Lake (Canada) is going to be retrofitted to oxy-firing
• Feasibility study concluded in 2011
• Retrofit detailed design ongoing
• Installation of oxygen supply system, flue gas recycle system and burner modifications by April 2013
• Test run by June 2013

Chemical Looping Combustion
• Next generation technology for heavy oil and potential breakthrough in capture cost
• Developed with CCP co-funding in previous phases to 120 MW unit with Ni-based carrier
• CCP3 is supporting work by several institutions in view of:
 • Verifying the potential of Cu-based carriers as a cheaper alternative to Ni-based carriers
 • Designing and costing demo unit (10 MW) and commercial unit for heavy oil extraction

Three areas for application of capture technologies
Oil Refining
• Responsible for 6% of total emissions of CO2
• Up to 4 million tons/year from single refinery
• Multisource/multistack environment:
 • Fluid Catalytic Cracking (FCC) unit
 • Hydrogen production
 • Boilers and process heaters

Heavy Oil Extraction
• Extraction technique by steam injection (SAGD) produces fuels with 20% higher footprint than conventional sources
• Major source of future growth for GHG emissions in producing countries (e.g. Canada)
• Once Through Steam Generators (OTSG) are the typical boilers used in SAGD operation

Natural Gas Power Stations
• Power generation from natural gas is widely used by oil & gas companies
• Current low cost of gas in North-America should increase the share of power from gas
• Low concentration of CO2 in the flue gas (4% vs. 12% typical of coal combustion) makes capture more difficult

Economics Team
Comms Team
Policy Team
Technology Providers
Capture Team
Storage Team
CO2 recycle system
• Retrofit to oxy-firing included installation of:
 • Oxygen supply system
 • CO2 recycle system

Oxy-fired Technology Demonstrations

Fluid Catalytic Cracking Regenerator
• Pilot FCC unit
 • Location: Sao Mateus do Sul (Brazil)
 • Size: 33 bbl/day of feed (~200 times larger than conventional FCC pilot units)
 • Retrofit to oxy-firing included installation of:
 • Oxygen supply system
 • CO2 recycle system
 • Test duration: September 2011/September 2012
 • Main results:
 • Demonstrated that FCC may work steadily in oxy-firing mode
 • CO2 concentrations > 93% vol. achieved in the flue gas
 • Corrosion problems in the flue gas recycle system identified and solved
 • In oxy-firing mode the unit capacity may be increased by ~10%
 • Economic evaluation confirmed that oxy-firing is competitive with post-combustion for this application

Once-Through Steam Generator
• Partnership including Canoeus Energy, Devon Canada, MEG Energy, Praxair and Statoil
• Co-funding by the Climate Change and Emission Management Corporation of the Province of Alberta
• 50 million BTU/hr commercial OTSG unit owned by Canoeus Energy in Christina Lake (Canada) is going to be retrofitted to oxy-firing
• Feasibility study concluded in 2011
• Retrofit detailed design ongoing
• Installation of oxygen supply system, flue gas recycle system and burner modifications by April 2013
• Test run by June 2013

Chemical Looping Combustion
• Next generation technology for heavy oil and potential breakthrough in capture cost
• Developed with CCP co-funding in previous phases to 120 MW unit with Ni-based carrier
• CCP3 is supporting work by several institutions in view of:
 • Verifying the potential of Cu-based carriers as a cheaper alternative to Ni-based carriers
 • Designing and costing demo unit (10 MW) and commercial unit for heavy oil extraction

PCO2C Partnership
• Pilot plant testing of novel post-combustion technology at the Energy & Environment Research center of the University of North Dakota (EERC)
• Programme conclusion by December 2012
• Specific focus on application to natural-gas fired power stations
• Extended testing of selected technology specific for the CCP during the first quarter of 2013