CCP completed its programme in 2022 and is no longer in operation. The site is planned to remain open and maintained until 2026 to enable access to information, but it will not be updated.

CCP - FAQs - About CCS: Capture

What is the cost of CCS? How much might it add to the cost of a KWh of electricity? How much might consumer electricity prices go up? Are there other ways of achieving similar reductions and what would they cost?

As a further operational and technical addition to traditional power generation and industrial processes, CCS represents an additional cost in the creation of products such as electricity, steel and cement.

In terms of the costs of CCS, the capture of CO₂ represents over 80% of the total costs associated with the CO₂ capture, transport and storage cycle.

With state-of-the-art technology, increase in the cost of electricity is in the range of 30-40%, and should be reduced to 10-15% by new technologies under development.

What are the most authoritative sources of the costs of CCS?

Academic organisations cannot have access to the type of detailed cost information that is necessary to assess actual costs of CCS. Actual costs are also affected by specific location factors and by the quickly varying cost of construction materials. An organisation like the CCP can supply a fair comparison among technologies for the applications of interest to the member companies.

Which of the capture types is the most cost effective and practical to apply in industrial settings? Why?

There is not a single capture type or technology that may be the best solution for every industrial setting. Post-combustion has a wider applicability than other approaches, since it is in principle always usable for retrofitting existing units. The associated cost may however be higher than with pre-combustion or oxy-firing.

Which of the capture types are being developed by the CCP?

CCP developed technologies in all fields of application. While CCP1 split the effort equally among three scenarios, CCP2 prioritised the development of pre-combustion technologies for application to power generation in Natural Gas Combined Cycles (NGCC). Nonetheless, the development of some high potential post-combustion and oxy-fired technologies also continued in later phases.

Is CO₂ capture a safe technology? Has it been done elsewhere? Are there any HSE implications for undertaking CO₂ capture on a large scale?

CO₂ Capture is a chemical technology. As such, it shares the same HSE concerns of any chemical plant. These concerns are specific for each technology and are addressed in the development and design phases.
While CO₂ capture has not yet been deployed on a large scale, technologies that contribute to it have been deployed (e.g. amine washing in gas purification units at well head), for some time at the same scale that will be used (e.g. syngas production units). For these technologies HSE concerns were already addressed and solved.

CO₂ is only one of the gases that come out of a power station chimney, and quite a small proportion at that? Do you store everything or do you separate out the CO₂? What happens to the other gases and chemicals?

The main component of the gas coming out of the chimney is nitrogen (~ 70% by vol.). Nitrogen is the main component of the air we breathe, and consequently does not cause any damages to the environment. The same can be said of the second and third components (steam and oxygen). Concentration of other minor components that may be pollutants is already regulated by law, and CO₂ capture is not adding any additional pollutants. CO₂ must be separated from the other gases to avoid compressing and storing huge amount of gases with higher costs.

What does “CCS-ready” mean?

CCS-ready indicates a plant or industrial facility has been fitted with the necessary CO₂ processing structure and physical space to easily add a post-combustion CCS facility at some point in the future. Making new builds CCS-ready is one of the most important steps to ensuring that the widest range of CO₂-emitting sources can be quickly adapted to CCS.

Many power stations and other industrial plants are already built and many are quite new, these could last for another 40 to 60 years before being replaced. Can CCS be fitted to these?

Post-combustion technology is the most promising of the three capture mechanisms to address the issue of existing power plants. However, it is also the most expensive and most necessary to quickly employ CCS to a desired effect. CCS can be fitted easily to those plants that have been specifically designed to accommodate a “retrofit” CCS capacity. Older plants present more of a challenge because of the cost aspect in adapting them to post-combustion technology, but nonetheless it is feasible to re-engineer these plants to this specification.


Learn more about CO₂ capture and storage by visiting


Final results book available.


A summary of 20 years of CCP - as shown at GHGT-15. View...

General links

Capture links

Storage links

Policy links


© Copyright 2023 CCP